Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Magnetic Nanoparticles Learn how to make and use magnetic nanoparticles in energy research, electrical engineering, and medicine In Magnetic Nanoparticles: Synthesis, Characterization, and Applications , a team of distinguished engineers and chemists delivers an insightful overview of magnetic materials with a focus on nano-sized particles. The book reviews the foundational concepts of magnetism before moving on to the synthesis of various magnetic nanoparticles and the functionalization of nanoparticles that enables their use in specific applications. The authors also highlight…mehr
Learn how to make and use magnetic nanoparticles in energy research, electrical engineering, and medicine
In Magnetic Nanoparticles: Synthesis, Characterization, and Applications, a team of distinguished engineers and chemists delivers an insightful overview of magnetic materials with a focus on nano-sized particles. The book reviews the foundational concepts of magnetism before moving on to the synthesis of various magnetic nanoparticles and the functionalization of nanoparticles that enables their use in specific applications. The authors also highlight characterization techniques and the characteristics of nanostructured magnetic materials, like superconducting quantum interference device (SQUID) magnetometry.
Advanced applications of magnetic nanoparticles in energy research, engineering, and medicine are also discussed, and explicit derivations and explanations in non-technical language help readers from diverse backgrounds understand the concepts contained within.
Readers will also find:
A thorough introduction to magnetic materials, including the theory and fundamentals of magnetization
In-depth explorations of the types and characteristics of soft and hard magnetic materials
Comprehensive discussions of the synthesis of nanostructured magnetic materials, including the importance of various preparation methods
Expansive treatments of the surface modification of magnetic nanoparticles, including the technical resources employed in the process
Perfect for materials scientists, applied physicists, and measurement and control engineers, Magnetic Nanoparticles: Synthesis, Characterization, and Applications will also earn a place in the libraries of inorganic chemists.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Abdollah Hajaliloi, PhD, is senior research fellow in the Department of Electrical and Computer Engineering at the University of Coimbra, Portugal. He graduated at the Institute of Advanced Technology of the University Putra Malaysia where he worked on the synthesis and characterization of nanoparticles. During his postdoctoral work at the University of Lisbon, Portugal, his research was focused on magnetic techniques such as SQUID magnetometry, Mössbauer spectroscopy, and AC susceptibility. Mahmoud Tavakoli, PhD, is assistant professor in the Department of Electrical and Computer Engineering at the University of Coimbra, Portugal, and Director of the Soft & Printed Materials Laboratory. His research interests include applications of micro- and nanomaterials, especially metallic nanoparticles and composites for applications in health, biosensing, and bioelectronics. Elahe Parvini, PhD, is Researcher in the Faculty of Chemistry at the University of Tabriz, Iran. After her PhD from the same university, she joined the College of Chemistry and Molecular Sciences at the University of Wuhan, China, as a postdoctoral research fellow.
Inhaltsangabe
1 Introduction to Magnetic Materials 1.1 Theory and Fundamentals of Magnetization 1.2 Types of Magnetism 1.3 Extrinsic and Intrinsic Characteristics of Magnetic Materials
2 Types and Characteristics of Magnetic Materials 2.1 Introduction 2.2 Soft and Hard Magnetic Materials 2.3 Hysteresis Loop 2.4 Magnetic Characteristic Measurements 2.5 Magnetic Losses
3 Insights into the Synthesis of Nanostructured Magnetic Materials 3.1 Introduction 3.2 The Synthesis Process of Magnetic Nanoparticles 3.3 The Importance of the Synthesis and/or Preparation Methods 3.4 Dependency of Particle Size and Shape on the Synthesis Route 3.5 Questions Related to the Selected Synthesis Route 3.6 Dependency of Magnetic Behaviors on Particle/Grain Size 3.7 Dependency of Magnetic Behaviors on Particle/Grain Shape 3.8 Introduction to Wet-Chemical Synthesis Route 3.9 Introduction to Solid-state Routes to Synthesize Magnetic Nanoparticles 3.10 Some Methods for Extraction of Iron Oxide Nanoparticles from Industrial Wastes
4 Surface Modification of Magnetic Nanoparticles 4.1 Introduction 4.2 Employed Technical Resources for Surface Modification 4.3 Surface Modification of Magnetic Nanoparticles with Surfactant 4.4 Current Trends for Surface Modification of Nanomaterials 4.5 Summary
5 Insight into a Superconducting Quantum Interference Device (SQUID) 5.1 Introduction to SQUID 5.2 Superconducting Materials Used in SQUID 5.3 What is the Basic Principle in SQUID VSM Magnetometer? 5.4 Superconductivity 5.5 Josephson Tunneling (JT) Phenomenon 5.6 Utilizations and Applications of SQUID 5.7 Advantages and Disadvantages of SQUID Compared to other Techniques in Characterization of Magnetic Nanomaterials
6 The principle of SQUID Magnetometry and its Contribution in MNPs Evaluation 6.1 Introduction 6.2 The Correct Procedure to Perform the Zero Field Cooling (ZFC) and Field Cooling (FC) Magnetic Study 6.3 The Concept of Merging Zero Field Cooled (ZFC) and Field Cooled (FC) Curve Completely with Each Other 6.4 Types of Information Obtained from the ZFC and FC Curves 6.5 SQUID Magnetometry: Magnetic Measurements
7 Type of Interactions in Magnetic Nanoparticles 7.1 Introduction 7.2 Magnetic Dipole-Dipole Interaction between Magnetic Nanoparticles 7.3 Exchange Interaction 7.4 Dipolar Interactions 7.5 Spin-orbit Interaction
8 Insight into Susceptibility Measurements in Nanostructured Magnetic Materials 8.1 Introduction 8.2 Information Obtained from Susceptibility Measurements 8.3 Insight into interaction between magnetic nanoparticles and used models 8.4 AC Susceptibility Measurement Evaluation
9 Induced Effects in Nanostructured Magnetic Materials 9.1 Introduction 9.2 The Spin-Canted Effect 9.3 Spin-glass-like Behavior in Magnetic Nanoparticles 9.4 Reentrant Spin Glass (RSG) Behavior in Magnetic Nanoparticles 9.5 Finite Size Effects on Magnetic Properties 9.6 Surface Effect in Nanosized Particles 9.7 Memory Effect
10 Insight into Superparamagnetism in Magnetic Nanoparticles 10.1 Introduction 10.2 Superparamagnetism 10.3 SPM Description Based on Magnetization Hysteresis Loop (M-H or B-H) 10.4 SPM detection based on ZFC and FC magnetization curves
11 Mössbauer Spectroscopy 11.1 Introduction to Mössbauer Spectroscopy 11.2 Observed Effects in Mössbauer 11.3 Hyperfine Interactions 11.4 Mössbauer Spectroscopy Applied to Magnetism
12 Applications of Magnetic Nanoparticles 12.1 Introduction 12.2 Magnetic Nanoparticles Application in Engineering Fields 12.3 Magnetic Nanoparticles Application in Energy 12.4 Magnetic Nanoparticles Application in Medical Sciences 12.5 Other General Applications of Magnetic Nanoparticles
1 Introduction to Magnetic Materials 1.1 Theory and Fundamentals of Magnetization 1.2 Types of Magnetism 1.3 Extrinsic and Intrinsic Characteristics of Magnetic Materials
2 Types and Characteristics of Magnetic Materials 2.1 Introduction 2.2 Soft and Hard Magnetic Materials 2.3 Hysteresis Loop 2.4 Magnetic Characteristic Measurements 2.5 Magnetic Losses
3 Insights into the Synthesis of Nanostructured Magnetic Materials 3.1 Introduction 3.2 The Synthesis Process of Magnetic Nanoparticles 3.3 The Importance of the Synthesis and/or Preparation Methods 3.4 Dependency of Particle Size and Shape on the Synthesis Route 3.5 Questions Related to the Selected Synthesis Route 3.6 Dependency of Magnetic Behaviors on Particle/Grain Size 3.7 Dependency of Magnetic Behaviors on Particle/Grain Shape 3.8 Introduction to Wet-Chemical Synthesis Route 3.9 Introduction to Solid-state Routes to Synthesize Magnetic Nanoparticles 3.10 Some Methods for Extraction of Iron Oxide Nanoparticles from Industrial Wastes
4 Surface Modification of Magnetic Nanoparticles 4.1 Introduction 4.2 Employed Technical Resources for Surface Modification 4.3 Surface Modification of Magnetic Nanoparticles with Surfactant 4.4 Current Trends for Surface Modification of Nanomaterials 4.5 Summary
5 Insight into a Superconducting Quantum Interference Device (SQUID) 5.1 Introduction to SQUID 5.2 Superconducting Materials Used in SQUID 5.3 What is the Basic Principle in SQUID VSM Magnetometer? 5.4 Superconductivity 5.5 Josephson Tunneling (JT) Phenomenon 5.6 Utilizations and Applications of SQUID 5.7 Advantages and Disadvantages of SQUID Compared to other Techniques in Characterization of Magnetic Nanomaterials
6 The principle of SQUID Magnetometry and its Contribution in MNPs Evaluation 6.1 Introduction 6.2 The Correct Procedure to Perform the Zero Field Cooling (ZFC) and Field Cooling (FC) Magnetic Study 6.3 The Concept of Merging Zero Field Cooled (ZFC) and Field Cooled (FC) Curve Completely with Each Other 6.4 Types of Information Obtained from the ZFC and FC Curves 6.5 SQUID Magnetometry: Magnetic Measurements
7 Type of Interactions in Magnetic Nanoparticles 7.1 Introduction 7.2 Magnetic Dipole-Dipole Interaction between Magnetic Nanoparticles 7.3 Exchange Interaction 7.4 Dipolar Interactions 7.5 Spin-orbit Interaction
8 Insight into Susceptibility Measurements in Nanostructured Magnetic Materials 8.1 Introduction 8.2 Information Obtained from Susceptibility Measurements 8.3 Insight into interaction between magnetic nanoparticles and used models 8.4 AC Susceptibility Measurement Evaluation
9 Induced Effects in Nanostructured Magnetic Materials 9.1 Introduction 9.2 The Spin-Canted Effect 9.3 Spin-glass-like Behavior in Magnetic Nanoparticles 9.4 Reentrant Spin Glass (RSG) Behavior in Magnetic Nanoparticles 9.5 Finite Size Effects on Magnetic Properties 9.6 Surface Effect in Nanosized Particles 9.7 Memory Effect
10 Insight into Superparamagnetism in Magnetic Nanoparticles 10.1 Introduction 10.2 Superparamagnetism 10.3 SPM Description Based on Magnetization Hysteresis Loop (M-H or B-H) 10.4 SPM detection based on ZFC and FC magnetization curves
11 Mössbauer Spectroscopy 11.1 Introduction to Mössbauer Spectroscopy 11.2 Observed Effects in Mössbauer 11.3 Hyperfine Interactions 11.4 Mössbauer Spectroscopy Applied to Magnetism
12 Applications of Magnetic Nanoparticles 12.1 Introduction 12.2 Magnetic Nanoparticles Application in Engineering Fields 12.3 Magnetic Nanoparticles Application in Energy 12.4 Magnetic Nanoparticles Application in Medical Sciences 12.5 Other General Applications of Magnetic Nanoparticles
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826