40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
Jetzt verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
  • Format: PDF

What is needed to get around the galaxy quickly has been known in science fiction since at least the 1960s TV's Star Trek made famous "warp drive" and a bunch of attendant, less well-known "technologies." Some of the episodes even featured "stargates," portals to the distant past or future. Until the 1980s, all this was regarded in the serious scientific community as speculative, if entertaining, silliness. That situation changed when Kip Thorne, instigated by Carl Sagan, reverse engineered the general relativistic requirements for any technology purporting to enable such rapid spacetime…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 10.52MB
Produktbeschreibung
What is needed to get around the galaxy quickly has been known in science fiction since at least the 1960s TV's Star Trek made famous "warp drive" and a bunch of attendant, less well-known "technologies." Some of the episodes even featured "stargates," portals to the distant past or future. Until the 1980s, all this was regarded in the serious scientific community as speculative, if entertaining, silliness. That situation changed when Kip Thorne, instigated by Carl Sagan, reverse engineered the general relativistic requirements for any technology purporting to enable such rapid spacetime transport.

The key requirement that Thorne identified was the creation of a Jupiter mass of "exotic" matter - that is, matter with negative rest mass. Thorne's work put discussion of rapid spacetime transport on the public agenda of serious science. It also set the benchmark for what has to be done to achieve truly advanced propulsion.

Being able to create the stupendous exotic mass of stuff needed to make stargates and warp drives is the holy grail of advanced propulsion. A less ambitious, but nonetheless revolutionary, goal is finding a way to accelerate a spaceship without having to lug along a gargantuan reservoir of fuel. And this may be possible. There has been progress on both the theoretical and experimental fronts since early 1990s.

Making Stars and Stargates has three parts. The first discusses the theories of relativity needed to understand the possible propulsion techniques. The second addresses experimental investigations into the feasibility of the predicted effects; that is, do the effects exist, and can they be applied to propulsion? The third part of the book - the most speculative - examines the questions: What physics is needed if we are to make wormholes and warp drives? Is such physics plausible? And how might we go about actually building such devices?


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. James F. Woodward is a professor of history emeritus and adjunct professor of physics at California State University Fullerton. Jim earned bachelor's and master's degrees in physics at Middlebury College and New York University (respectively) in the 1960s. From his undergraduate days, his chief interest was in gravitation. For his Ph.D., he changed to the history of science, writing a dissertation on the history of attempts to deal with the problem of "action-at-a-distance" in gravity theory from the 17th to the early 20th centuries (Ph.D., University of Denver, 1972). On completion of his graduate studies, Jim took a teaching job in the history of science at California State University Fullerton (CSUF), where he has been ever since. Shortly after his arrival at CSUF, he established friendships with colleagues in the Physics Department who helped him set up a small-scale, table-top experimental research program doing offbeat experiments related to gravitation - experiments which continue to this day. In 1980, the faculty of the Physics Department elected Jim to an adjunct professorship in the department in recognition of his ongoing research.

Rezensionen
"The author looks into published scientific papers in those topics on the possibility of travel at light-speed using different methods, looking into the physics and mathematics there etc. ... the book also has excellent bibliography which can guide you either in the more popular books direction or to some more technical books. I found that it was interesting, well written and followed a logical structure so you see how the different principles and concepts are all necessary for it." (AstroMadness.com, October, 2016)