Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In the context of Geographical Information Systems (GIS) the book offers a timely review of map projections (sphere, ellipsoid, rotational surfaces) and geodetic datum transformations. For the needs of photogrammetry, computer vision, and remote sensing space projective mappings are reviewed.
In the context of Geographical Information Systems (GIS) the book offers a timely review of map projections (sphere, ellipsoid, rotational surfaces) and geodetic datum transformations. For the needs of photogrammetry, computer vision, and remote sensing space projective mappings are reviewed.
Prof. Dr. Erik W. Grafarend, Stuttgart University, Stuttgart, Germany email: grafarend@gis.uni-stuttgart.de Prof. Dr.-Ing. Rey-Jer You, National Cheng Kung University, Tainan, Taiwan Dipl.-Ing. Rainer Syffus, ESG Elektroniksystem- und Logistik GmbH, Fuerstenfeldbruck, Germany
Inhaltsangabe
From Riemann manifolds to Riemann manifolds.- From Riemann manifolds to Euclidean manifolds.- Coordinates.- Surfaces of Gaussian curvature zero.- “Sphere to tangential plane”: polar (normal) aspect.- “Sphere to tangential plane”: transverse aspect.- “Sphere to tangential plane”: oblique aspect.- “Ellipsoid-of-revolution to tangential plane”.- “Ellipsoid-of-revolution to sphere and from sphere to plane”.- “Sphere to cylinder”: polar aspect.- “Sphere to cylinder”: transverse aspect.- “Sphere to cylinder”: oblique aspect.- “Sphere to cylinder”: pseudo-cylindrical projections.- “Ellipsoid-of-revolution to cylinder”: polar aspect.- “Ellipsoid-of-revolution to cylinder”: transverse aspect.- “Ellipsoid-of-revolution to cylinder”: oblique aspect.- “Sphere to cone”: polar aspect.- “Sphere to cone”: pseudo-conic projections.- “Ellipsoid-of-revolution to cone”: polar aspect.- Geodetic mapping.- Datum problems.
From the Contents: From Riemann manifolds to Riemann manifolds.- From Riemann manifolds to Euclidean manifolds.- Coordinates.- Surfaces of Gaussian curvature zero.- Sphere to tangential plane': polar (normal) aspect.- Sphere to tangential plane': transverse aspect.- Sphere to tangential plane: oblique aspect.- Ellipsoid-of-revolution to tangential plane.- Ellipsoid-of-revolution to sphere and from sphere to plane.- Sphere to cylinder: polar aspect.- Sphere to cylinder: transverse aspect.
From Riemann manifolds to Riemann manifolds.- From Riemann manifolds to Euclidean manifolds.- Coordinates.- Surfaces of Gaussian curvature zero.- “Sphere to tangential plane”: polar (normal) aspect.- “Sphere to tangential plane”: transverse aspect.- “Sphere to tangential plane”: oblique aspect.- “Ellipsoid-of-revolution to tangential plane”.- “Ellipsoid-of-revolution to sphere and from sphere to plane”.- “Sphere to cylinder”: polar aspect.- “Sphere to cylinder”: transverse aspect.- “Sphere to cylinder”: oblique aspect.- “Sphere to cylinder”: pseudo-cylindrical projections.- “Ellipsoid-of-revolution to cylinder”: polar aspect.- “Ellipsoid-of-revolution to cylinder”: transverse aspect.- “Ellipsoid-of-revolution to cylinder”: oblique aspect.- “Sphere to cone”: polar aspect.- “Sphere to cone”: pseudo-conic projections.- “Ellipsoid-of-revolution to cone”: polar aspect.- Geodetic mapping.- Datum problems.
From the Contents: From Riemann manifolds to Riemann manifolds.- From Riemann manifolds to Euclidean manifolds.- Coordinates.- Surfaces of Gaussian curvature zero.- Sphere to tangential plane': polar (normal) aspect.- Sphere to tangential plane': transverse aspect.- Sphere to tangential plane: oblique aspect.- Ellipsoid-of-revolution to tangential plane.- Ellipsoid-of-revolution to sphere and from sphere to plane.- Sphere to cylinder: polar aspect.- Sphere to cylinder: transverse aspect.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu