Alexander D. Kolesnik
Markov Random Flights (eBook, PDF)
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Alexander D. Kolesnik
Markov Random Flights (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is the first systematic presentation of the theory of Markov random flights in the Euclidean spaces of different dimensions. Markov random flights acts as an effective tool for modeling the slow and super-slow diffusion processes arising in various fields of science and technology.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 36.08MB
Andere Kunden interessierten sich auch für
- Alexander D. KolesnikMarkov Random Flights (eBook, ePUB)52,95 €
- Firdous A. ShahWavelet Transforms (eBook, PDF)81,95 €
- Bruce J. WestFractional Calculus View of Complexity (eBook, PDF)48,95 €
- Svetlin GeorgievBoundary Value Problems on Time Scales, Volume II (eBook, PDF)94,95 €
- Bijan Kumar BagchiPartial Differential Equations for Mathematical Physicists (eBook, PDF)109,95 €
- Prem K. KytheHandbook of Conformal Mappings and Applications (eBook, PDF)48,95 €
- Pao-Liu ChowStochastic Partial Differential Equations (eBook, PDF)52,95 €
-
-
-
This book is the first systematic presentation of the theory of Markov random flights in the Euclidean spaces of different dimensions. Markov random flights acts as an effective tool for modeling the slow and super-slow diffusion processes arising in various fields of science and technology.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 406
- Erscheinungstermin: 4. Januar 2021
- Englisch
- ISBN-13: 9781000338775
- Artikelnr.: 60858112
- Verlag: Taylor & Francis
- Seitenzahl: 406
- Erscheinungstermin: 4. Januar 2021
- Englisch
- ISBN-13: 9781000338775
- Artikelnr.: 60858112
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Alexander D. Kolesnik is the Professor, Head of laboratory (2015 - 2019), and Principal Researcher (since 2020) at the Institute of Mathematics and Computer Science, Kishinev (Chi¿inau), Moldova. He graduated from Moldova State University in 1980 and received PhD from the Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine in 1991 and PhD Habilitation in mathematics and physics with the specialization in stochastic processes, probability and statistics conferred by the Specialized Council at the Institute of Mathematics of the National Academy of Sciences of Ukraine and confirmed by the Supreme Attestation Commission of Ukraine in 2010. His research interests include probability and statistics, stochastic processes, random evolutions, stochastic dynamic systems, random flights, diffusion processes, transport processes, random walks, stochastic processes in random environments, partial differential equations in stochastic models, statistical physics, wave processes. Dr Kolesnik has published more than 70 scientific publications, including those published in high-standard international journals and a monograph. He has also acted as external referee for many outstanding international journals in mathematics and physics. He was the visiting professor and scholarship holder in the universities in Italy and Germany and member of the Board of Global Advisors of the International Federation of Nonlinear Analysts (IFNA), U.S.A.
1. Preliminaries. 1.1. Markov processes. 1.2. Random evolutions. 1.3.
Determinant theorem. 1.4. Kurtz's diffusion approximation theorem. 1.5.
Special functions. 1.6. Hypergeometric functions. 1.7. Generalized
functions. 1.8. Integral transforms. 1.9. Auxiliary lemmas. 2. Telegraph
Processes. 2.1. Definition of the process and structure of distribution.
2.2. Kolmogorov equation. 2.3. Telegraph equation. 2.4. Characteristic
function. 2.5. Transition density. 2.6. Probability distribution function.
2.7. Convergence to the Wiener process. 2.8. Laplace transform of
transition density. 2.9. Moment analysis. 2.11. Telegraph-type processes
with several velocities. 2.12. Euclidean distance between two telegraph
processes. 2.13. Sum of two telegraph processes. 2.14. Linear combinations
of telegraph processes. 3. Planar Random Motion with a Finite Number of
Directions. 3.1. Description of the model and the main result. 3.2. Proof
of the Main Theorem. 3.3. Diffusion area. 3.4. Polynomial representations
of the generator. 3.5. Limiting differential operator. 3.6. Weak
convergence to the Wiener process. 4. Integral Transforms of the
Distributions of Markov Random Flights. 4.1. Description of process and
structure of distribution. 4.2. Recurrent integral relations. 4.3. Laplace
transforms of conditional characteristic functions. 4.4. Conditional
characteristic functions. 4.5. Integral equation for characteristic
function. 4.6. Laplace transform of characteristic function. 4.7. Initial
conditions. 4.8. Limit theorem. 4.9. Random flight with rare switching.
4.10. Hyper-parabolic operators. 4.11. Random flight with arbitrary
dissipation function. 4.12. Integral equation for transition density. 5.
Markov Random Flight in the Plane R2. 5.1. Conditional densities. 5.2
Distribution of the process. 5.3. Characteristic function. 5.4 Telegraph
equation. 5.5. Limit theorem. 5.6. Alternative derivation of transition
density. 5.7. Moments. 5.8. Random flight with Gaussian starting point.
5.9. Euclidean distance between two random flights. 6. Markov Random Flight
in the Space R3. 6.1. Characteristic function. 6.2. Discontinuous term of
distribution. 6.3. Limit theorem. 6.4. Asymptotic relation for the
transition density. 6.5. Fundamental solution to Kolmogorov equation. 7.
Markov Random Flight in the Space R4. 7.1. Conditional densities. 7.2.
Distribution of the process. 7.3. Characteristic function. 7.4. Limit
theorem. 7.5. Moments. 8. Markov Random Flight in the Space R6. 8.1.
Conditional densities. 8.2. Distribution of the process. 9. Applied Models.
9.1. Slow diffusion. 9.2. Fluctuations of water level in reservoir. 9.3.
Pollution model. 9.4. Physical applications. 9.5 Option pricing.
Determinant theorem. 1.4. Kurtz's diffusion approximation theorem. 1.5.
Special functions. 1.6. Hypergeometric functions. 1.7. Generalized
functions. 1.8. Integral transforms. 1.9. Auxiliary lemmas. 2. Telegraph
Processes. 2.1. Definition of the process and structure of distribution.
2.2. Kolmogorov equation. 2.3. Telegraph equation. 2.4. Characteristic
function. 2.5. Transition density. 2.6. Probability distribution function.
2.7. Convergence to the Wiener process. 2.8. Laplace transform of
transition density. 2.9. Moment analysis. 2.11. Telegraph-type processes
with several velocities. 2.12. Euclidean distance between two telegraph
processes. 2.13. Sum of two telegraph processes. 2.14. Linear combinations
of telegraph processes. 3. Planar Random Motion with a Finite Number of
Directions. 3.1. Description of the model and the main result. 3.2. Proof
of the Main Theorem. 3.3. Diffusion area. 3.4. Polynomial representations
of the generator. 3.5. Limiting differential operator. 3.6. Weak
convergence to the Wiener process. 4. Integral Transforms of the
Distributions of Markov Random Flights. 4.1. Description of process and
structure of distribution. 4.2. Recurrent integral relations. 4.3. Laplace
transforms of conditional characteristic functions. 4.4. Conditional
characteristic functions. 4.5. Integral equation for characteristic
function. 4.6. Laplace transform of characteristic function. 4.7. Initial
conditions. 4.8. Limit theorem. 4.9. Random flight with rare switching.
4.10. Hyper-parabolic operators. 4.11. Random flight with arbitrary
dissipation function. 4.12. Integral equation for transition density. 5.
Markov Random Flight in the Plane R2. 5.1. Conditional densities. 5.2
Distribution of the process. 5.3. Characteristic function. 5.4 Telegraph
equation. 5.5. Limit theorem. 5.6. Alternative derivation of transition
density. 5.7. Moments. 5.8. Random flight with Gaussian starting point.
5.9. Euclidean distance between two random flights. 6. Markov Random Flight
in the Space R3. 6.1. Characteristic function. 6.2. Discontinuous term of
distribution. 6.3. Limit theorem. 6.4. Asymptotic relation for the
transition density. 6.5. Fundamental solution to Kolmogorov equation. 7.
Markov Random Flight in the Space R4. 7.1. Conditional densities. 7.2.
Distribution of the process. 7.3. Characteristic function. 7.4. Limit
theorem. 7.5. Moments. 8. Markov Random Flight in the Space R6. 8.1.
Conditional densities. 8.2. Distribution of the process. 9. Applied Models.
9.1. Slow diffusion. 9.2. Fluctuations of water level in reservoir. 9.3.
Pollution model. 9.4. Physical applications. 9.5 Option pricing.
1. Preliminaries. 1.1. Markov processes. 1.2. Random evolutions. 1.3.
Determinant theorem. 1.4. Kurtz's diffusion approximation theorem. 1.5.
Special functions. 1.6. Hypergeometric functions. 1.7. Generalized
functions. 1.8. Integral transforms. 1.9. Auxiliary lemmas. 2. Telegraph
Processes. 2.1. Definition of the process and structure of distribution.
2.2. Kolmogorov equation. 2.3. Telegraph equation. 2.4. Characteristic
function. 2.5. Transition density. 2.6. Probability distribution function.
2.7. Convergence to the Wiener process. 2.8. Laplace transform of
transition density. 2.9. Moment analysis. 2.11. Telegraph-type processes
with several velocities. 2.12. Euclidean distance between two telegraph
processes. 2.13. Sum of two telegraph processes. 2.14. Linear combinations
of telegraph processes. 3. Planar Random Motion with a Finite Number of
Directions. 3.1. Description of the model and the main result. 3.2. Proof
of the Main Theorem. 3.3. Diffusion area. 3.4. Polynomial representations
of the generator. 3.5. Limiting differential operator. 3.6. Weak
convergence to the Wiener process. 4. Integral Transforms of the
Distributions of Markov Random Flights. 4.1. Description of process and
structure of distribution. 4.2. Recurrent integral relations. 4.3. Laplace
transforms of conditional characteristic functions. 4.4. Conditional
characteristic functions. 4.5. Integral equation for characteristic
function. 4.6. Laplace transform of characteristic function. 4.7. Initial
conditions. 4.8. Limit theorem. 4.9. Random flight with rare switching.
4.10. Hyper-parabolic operators. 4.11. Random flight with arbitrary
dissipation function. 4.12. Integral equation for transition density. 5.
Markov Random Flight in the Plane R2. 5.1. Conditional densities. 5.2
Distribution of the process. 5.3. Characteristic function. 5.4 Telegraph
equation. 5.5. Limit theorem. 5.6. Alternative derivation of transition
density. 5.7. Moments. 5.8. Random flight with Gaussian starting point.
5.9. Euclidean distance between two random flights. 6. Markov Random Flight
in the Space R3. 6.1. Characteristic function. 6.2. Discontinuous term of
distribution. 6.3. Limit theorem. 6.4. Asymptotic relation for the
transition density. 6.5. Fundamental solution to Kolmogorov equation. 7.
Markov Random Flight in the Space R4. 7.1. Conditional densities. 7.2.
Distribution of the process. 7.3. Characteristic function. 7.4. Limit
theorem. 7.5. Moments. 8. Markov Random Flight in the Space R6. 8.1.
Conditional densities. 8.2. Distribution of the process. 9. Applied Models.
9.1. Slow diffusion. 9.2. Fluctuations of water level in reservoir. 9.3.
Pollution model. 9.4. Physical applications. 9.5 Option pricing.
Determinant theorem. 1.4. Kurtz's diffusion approximation theorem. 1.5.
Special functions. 1.6. Hypergeometric functions. 1.7. Generalized
functions. 1.8. Integral transforms. 1.9. Auxiliary lemmas. 2. Telegraph
Processes. 2.1. Definition of the process and structure of distribution.
2.2. Kolmogorov equation. 2.3. Telegraph equation. 2.4. Characteristic
function. 2.5. Transition density. 2.6. Probability distribution function.
2.7. Convergence to the Wiener process. 2.8. Laplace transform of
transition density. 2.9. Moment analysis. 2.11. Telegraph-type processes
with several velocities. 2.12. Euclidean distance between two telegraph
processes. 2.13. Sum of two telegraph processes. 2.14. Linear combinations
of telegraph processes. 3. Planar Random Motion with a Finite Number of
Directions. 3.1. Description of the model and the main result. 3.2. Proof
of the Main Theorem. 3.3. Diffusion area. 3.4. Polynomial representations
of the generator. 3.5. Limiting differential operator. 3.6. Weak
convergence to the Wiener process. 4. Integral Transforms of the
Distributions of Markov Random Flights. 4.1. Description of process and
structure of distribution. 4.2. Recurrent integral relations. 4.3. Laplace
transforms of conditional characteristic functions. 4.4. Conditional
characteristic functions. 4.5. Integral equation for characteristic
function. 4.6. Laplace transform of characteristic function. 4.7. Initial
conditions. 4.8. Limit theorem. 4.9. Random flight with rare switching.
4.10. Hyper-parabolic operators. 4.11. Random flight with arbitrary
dissipation function. 4.12. Integral equation for transition density. 5.
Markov Random Flight in the Plane R2. 5.1. Conditional densities. 5.2
Distribution of the process. 5.3. Characteristic function. 5.4 Telegraph
equation. 5.5. Limit theorem. 5.6. Alternative derivation of transition
density. 5.7. Moments. 5.8. Random flight with Gaussian starting point.
5.9. Euclidean distance between two random flights. 6. Markov Random Flight
in the Space R3. 6.1. Characteristic function. 6.2. Discontinuous term of
distribution. 6.3. Limit theorem. 6.4. Asymptotic relation for the
transition density. 6.5. Fundamental solution to Kolmogorov equation. 7.
Markov Random Flight in the Space R4. 7.1. Conditional densities. 7.2.
Distribution of the process. 7.3. Characteristic function. 7.4. Limit
theorem. 7.5. Moments. 8. Markov Random Flight in the Space R6. 8.1.
Conditional densities. 8.2. Distribution of the process. 9. Applied Models.
9.1. Slow diffusion. 9.2. Fluctuations of water level in reservoir. 9.3.
Pollution model. 9.4. Physical applications. 9.5 Option pricing.