Das Buch ist eine kompakte, leicht lesbare Einführung in die Maß- und Integrationstheorie samt Wahrscheinlichkeitstheorie, in der auch auf den für das Verständnis wichtigen Bezug zur klassischen Analysis, etwa in Abschnitten über Funktionen von beschränkter Variation oder dem Hauptsatz der Differential- und Integralrechnung eingegangen wird. Trotz seines verhältnismäßig geringen Umfangs behandelt es alle wesentlichen Themen dieser Fachgebiete, wie Mengensysteme, Mengenfunktionen Maßfortsetzung, Unabhängigkeit, Lebesgue-Stieltjes-Maße, Verteilungsfunktionen, messbare Funktionen, Zufallsvariable, Integral, Erwartungswert, Konvergenzsätze, Transformationssätze, Produkträume, Satz von Fubini, Zerlegungssätze, Funktionen von beschränkter Variation, Hauptsatz der Differential- und Integralrechnung, Lp-Räume, Bedingte Erwartungen, Gesetze der großen Zahlen, Ergodensätze, Martingale, Verteilungskonvergenz. charakteristische Funktionen und die Grenzverteilungssätze von Lindeberg und Feller.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This is a compact and easy-to-read textbook for a two-semester introductory course on the basics of measure, integration and probability theories. The material is specially prepared for students who have basic knowledge of real analysis. It is addressed to a circle of readers who would like to gain an overview of the most important topics and problems of measure and integration theory, as well as of probability theory." (Wduadro S. Zeron, Mathematical Reviews, June, 2017)