33,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
17 °P sammeln
  • Format: ePub

Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep…mehr

Produktbeschreibung
Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science.
This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today.
On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain.

Autorenporträt
Dr. Uday Kamath is the chief data scientist at BAE Systems Applied Intelligence. He specializes in scalable machine learning and has spent 20 years in the domain of AML, fraud detection in financial crime, cyber security, and bioinformatics, to name a few. Dr. Kamath is responsible for key products in areas focusing on the behavioral, social networking and big data machine learning aspects of analytics at BAE AI. He received his PhD at George Mason University, under the able guidance of Dr. Kenneth De Jong, where his dissertation research focused on machine learning for big data and automated sequence mining.