83,95 €
83,95 €
inkl. MwSt.
Sofort per Download lieferbar
42 °P sammeln
83,95 €
Als Download kaufen
83,95 €
inkl. MwSt.
Sofort per Download lieferbar
42 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
83,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
42 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Rich in applications, this text can be used for a semester-long course in differential equations or mathematical biology or serve as a companion text for a 2-semester sequence beginning with discrete time systems, through a wide array of topics in differential equations, culminating in systems, SIR models, & other applications.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Christina AlveyMathematical Biology (eBook, PDF)83,95 €
- D. S. JonesDifferential Equations and Mathematical Biology (eBook, ePUB)91,95 €
- Dean G. DuffyAdvanced Engineering Mathematics (eBook, ePUB)91,95 €
- Ronald E. MickensIntroduction to Qualitative Methods for Differential Equations (eBook, ePUB)50,95 €
- Kenneth B. HowellOrdinary Differential Equations (eBook, ePUB)47,95 €
- Alfio BorzìModelling with Ordinary Differential Equations (eBook, ePUB)49,95 €
- Yogeshwari F PatelApplications of Differential Transform to Real World Problems (eBook, ePUB)192,95 €
-
-
-
Rich in applications, this text can be used for a semester-long course in differential equations or mathematical biology or serve as a companion text for a 2-semester sequence beginning with discrete time systems, through a wide array of topics in differential equations, culminating in systems, SIR models, & other applications.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Erscheinungstermin: 9. August 2024
- Englisch
- ISBN-13: 9781040098080
- Artikelnr.: 72271173
- Verlag: Taylor & Francis eBooks
- Erscheinungstermin: 9. August 2024
- Englisch
- ISBN-13: 9781040098080
- Artikelnr.: 72271173
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Christina Alvey is an associate professor of mathematics at Mount Saint Mary College in Newburgh, NY. She earned a PhD in mathematics from Purdue University. Her current research investigates mathematical models in biology and epidemiology, as well as current trends and developments in the field of mathematics education.
Daniel Alvey is a data scientist at Accenture Federal Services. Prior to this, he was an assistant professor of mathematics at Manhattan College in the Bronx, NY, and a visiting assistant professor of mathematics at Trinity College in Hartford, CT. He earned his PhD in mathematics from Wesleyan University, where his research focused on homogeneous dynamics and metric number theory.
Daniel Alvey is a data scientist at Accenture Federal Services. Prior to this, he was an assistant professor of mathematics at Manhattan College in the Bronx, NY, and a visiting assistant professor of mathematics at Trinity College in Hartford, CT. He earned his PhD in mathematics from Wesleyan University, where his research focused on homogeneous dynamics and metric number theory.
1 Modeling with Discrete Equations
1.1 Introduction to Difference Equations
1.1.1 Exponential, Linear Difference, and Logistic Models
1.1.2 Fishery Models
1.2 First Order Difference Equations and Fixed Points
1.2.1 Cobweb Analysis
1.2.2 Fixed Points and Stability
1.3 Solutions of Linear First Order Difference Equations
1.4 Solutions of Linear Homogeneous Second Order Difference Equations
1.4.1 Distinct Roots
1.4.2 Repeated Roots
1.4.3 Complex Roots
1.5 Systems of Difference Equations: Fixed Points and Stability
1.5.1 The Eigenvalue Approach
1.5.2 The Jury Condition
1.5.3 Discrete Interacting Species Models
1.6 Age-Structured Leslie Matrix Models
2 Introduction to Ordinary Differential Equations
2.1 Classification of ODEs and the Verification of their Solutions
2.2 Existence and Uniqueness of Solutions of Linear First Order ODEs
2.3 Vector Fields
3 Modeling with First Order ODEs
3.1 First Order ODEs and their Applications
3.1.1 Exponential, Migration, and Logistic Models
3.1.2 Newton's Law of Cooling
3.1.3 Mixing Models
3.1.4 Interacting Species
3.2 Autonomous Equations
3.3 Bifurcation Diagrams
3.4 Separable Equations
3.5 Integrating Factors
3.6 Exact Equations
4 Modeling with Second Order ODEs
4.1 The Wronskian and the Fundamental Set
4.2 The Characteristic Equation and Solutions of Linear Homogeneous Second
Order ODEs
4.2.1 Distinct Real Roots
4.2.2 Repeated Roots
4.2.3 Complex Roots
4.3 Mechanical and Electrical Vibrations
4.3.1 Mechanical Vibrations: Unforced Springs
4.3.2 Electrical Vibrations: RLC Circuits
4.4 Reduction of Order
4.5 Linear Nonhomogeneous Second Order ODEs: Undetermined Coefficients
4.6 Linear Nonhomogeneous Second Order ODEs: Variation of Parameters
4.7 Forced Vibrations
5 Modeling with Systems of ODEs
5.1 Systems of ODEs and their Applications
5.1.1 Interacting Species
5.1.2 Parallel RLC Circuits
5.1.3 Multiple Tank Mixing Problems
5.2 Stability of Equilibria of Linear Systems using Eigenvalues
5.3 Solutions of Systems of Linear ODEs
5.3.1 Distinct Eigenvalues
5.3.2 Repeated Eigenvalues
5.3.3 Complex Eigenvalues
5.3.4 Solutions of Linear Modeling Problems
5.4 Solutions of Linear Nonhomogeneous Systems: Undetermined Coefficients
5.5 The Stability Criteria for Linear and Nonlinear ODEs
5.6 Phase Planes and Nullclines
6 SIR-Type Models
6.1 The Basic SIR Model with Birth and Death
6.1.1 Equilibria and Stability
6.1.2 The Basic Reproduction Number, R0
6.2 The SEIR Model
6.3 A Model with Vaccination
6.4 Sensitivity Analysis
1.1 Introduction to Difference Equations
1.1.1 Exponential, Linear Difference, and Logistic Models
1.1.2 Fishery Models
1.2 First Order Difference Equations and Fixed Points
1.2.1 Cobweb Analysis
1.2.2 Fixed Points and Stability
1.3 Solutions of Linear First Order Difference Equations
1.4 Solutions of Linear Homogeneous Second Order Difference Equations
1.4.1 Distinct Roots
1.4.2 Repeated Roots
1.4.3 Complex Roots
1.5 Systems of Difference Equations: Fixed Points and Stability
1.5.1 The Eigenvalue Approach
1.5.2 The Jury Condition
1.5.3 Discrete Interacting Species Models
1.6 Age-Structured Leslie Matrix Models
2 Introduction to Ordinary Differential Equations
2.1 Classification of ODEs and the Verification of their Solutions
2.2 Existence and Uniqueness of Solutions of Linear First Order ODEs
2.3 Vector Fields
3 Modeling with First Order ODEs
3.1 First Order ODEs and their Applications
3.1.1 Exponential, Migration, and Logistic Models
3.1.2 Newton's Law of Cooling
3.1.3 Mixing Models
3.1.4 Interacting Species
3.2 Autonomous Equations
3.3 Bifurcation Diagrams
3.4 Separable Equations
3.5 Integrating Factors
3.6 Exact Equations
4 Modeling with Second Order ODEs
4.1 The Wronskian and the Fundamental Set
4.2 The Characteristic Equation and Solutions of Linear Homogeneous Second
Order ODEs
4.2.1 Distinct Real Roots
4.2.2 Repeated Roots
4.2.3 Complex Roots
4.3 Mechanical and Electrical Vibrations
4.3.1 Mechanical Vibrations: Unforced Springs
4.3.2 Electrical Vibrations: RLC Circuits
4.4 Reduction of Order
4.5 Linear Nonhomogeneous Second Order ODEs: Undetermined Coefficients
4.6 Linear Nonhomogeneous Second Order ODEs: Variation of Parameters
4.7 Forced Vibrations
5 Modeling with Systems of ODEs
5.1 Systems of ODEs and their Applications
5.1.1 Interacting Species
5.1.2 Parallel RLC Circuits
5.1.3 Multiple Tank Mixing Problems
5.2 Stability of Equilibria of Linear Systems using Eigenvalues
5.3 Solutions of Systems of Linear ODEs
5.3.1 Distinct Eigenvalues
5.3.2 Repeated Eigenvalues
5.3.3 Complex Eigenvalues
5.3.4 Solutions of Linear Modeling Problems
5.4 Solutions of Linear Nonhomogeneous Systems: Undetermined Coefficients
5.5 The Stability Criteria for Linear and Nonlinear ODEs
5.6 Phase Planes and Nullclines
6 SIR-Type Models
6.1 The Basic SIR Model with Birth and Death
6.1.1 Equilibria and Stability
6.1.2 The Basic Reproduction Number, R0
6.2 The SEIR Model
6.3 A Model with Vaccination
6.4 Sensitivity Analysis
1 Modeling with Discrete Equations
1.1 Introduction to Difference Equations
1.1.1 Exponential, Linear Difference, and Logistic Models
1.1.2 Fishery Models
1.2 First Order Difference Equations and Fixed Points
1.2.1 Cobweb Analysis
1.2.2 Fixed Points and Stability
1.3 Solutions of Linear First Order Difference Equations
1.4 Solutions of Linear Homogeneous Second Order Difference Equations
1.4.1 Distinct Roots
1.4.2 Repeated Roots
1.4.3 Complex Roots
1.5 Systems of Difference Equations: Fixed Points and Stability
1.5.1 The Eigenvalue Approach
1.5.2 The Jury Condition
1.5.3 Discrete Interacting Species Models
1.6 Age-Structured Leslie Matrix Models
2 Introduction to Ordinary Differential Equations
2.1 Classification of ODEs and the Verification of their Solutions
2.2 Existence and Uniqueness of Solutions of Linear First Order ODEs
2.3 Vector Fields
3 Modeling with First Order ODEs
3.1 First Order ODEs and their Applications
3.1.1 Exponential, Migration, and Logistic Models
3.1.2 Newton's Law of Cooling
3.1.3 Mixing Models
3.1.4 Interacting Species
3.2 Autonomous Equations
3.3 Bifurcation Diagrams
3.4 Separable Equations
3.5 Integrating Factors
3.6 Exact Equations
4 Modeling with Second Order ODEs
4.1 The Wronskian and the Fundamental Set
4.2 The Characteristic Equation and Solutions of Linear Homogeneous Second
Order ODEs
4.2.1 Distinct Real Roots
4.2.2 Repeated Roots
4.2.3 Complex Roots
4.3 Mechanical and Electrical Vibrations
4.3.1 Mechanical Vibrations: Unforced Springs
4.3.2 Electrical Vibrations: RLC Circuits
4.4 Reduction of Order
4.5 Linear Nonhomogeneous Second Order ODEs: Undetermined Coefficients
4.6 Linear Nonhomogeneous Second Order ODEs: Variation of Parameters
4.7 Forced Vibrations
5 Modeling with Systems of ODEs
5.1 Systems of ODEs and their Applications
5.1.1 Interacting Species
5.1.2 Parallel RLC Circuits
5.1.3 Multiple Tank Mixing Problems
5.2 Stability of Equilibria of Linear Systems using Eigenvalues
5.3 Solutions of Systems of Linear ODEs
5.3.1 Distinct Eigenvalues
5.3.2 Repeated Eigenvalues
5.3.3 Complex Eigenvalues
5.3.4 Solutions of Linear Modeling Problems
5.4 Solutions of Linear Nonhomogeneous Systems: Undetermined Coefficients
5.5 The Stability Criteria for Linear and Nonlinear ODEs
5.6 Phase Planes and Nullclines
6 SIR-Type Models
6.1 The Basic SIR Model with Birth and Death
6.1.1 Equilibria and Stability
6.1.2 The Basic Reproduction Number, R0
6.2 The SEIR Model
6.3 A Model with Vaccination
6.4 Sensitivity Analysis
1.1 Introduction to Difference Equations
1.1.1 Exponential, Linear Difference, and Logistic Models
1.1.2 Fishery Models
1.2 First Order Difference Equations and Fixed Points
1.2.1 Cobweb Analysis
1.2.2 Fixed Points and Stability
1.3 Solutions of Linear First Order Difference Equations
1.4 Solutions of Linear Homogeneous Second Order Difference Equations
1.4.1 Distinct Roots
1.4.2 Repeated Roots
1.4.3 Complex Roots
1.5 Systems of Difference Equations: Fixed Points and Stability
1.5.1 The Eigenvalue Approach
1.5.2 The Jury Condition
1.5.3 Discrete Interacting Species Models
1.6 Age-Structured Leslie Matrix Models
2 Introduction to Ordinary Differential Equations
2.1 Classification of ODEs and the Verification of their Solutions
2.2 Existence and Uniqueness of Solutions of Linear First Order ODEs
2.3 Vector Fields
3 Modeling with First Order ODEs
3.1 First Order ODEs and their Applications
3.1.1 Exponential, Migration, and Logistic Models
3.1.2 Newton's Law of Cooling
3.1.3 Mixing Models
3.1.4 Interacting Species
3.2 Autonomous Equations
3.3 Bifurcation Diagrams
3.4 Separable Equations
3.5 Integrating Factors
3.6 Exact Equations
4 Modeling with Second Order ODEs
4.1 The Wronskian and the Fundamental Set
4.2 The Characteristic Equation and Solutions of Linear Homogeneous Second
Order ODEs
4.2.1 Distinct Real Roots
4.2.2 Repeated Roots
4.2.3 Complex Roots
4.3 Mechanical and Electrical Vibrations
4.3.1 Mechanical Vibrations: Unforced Springs
4.3.2 Electrical Vibrations: RLC Circuits
4.4 Reduction of Order
4.5 Linear Nonhomogeneous Second Order ODEs: Undetermined Coefficients
4.6 Linear Nonhomogeneous Second Order ODEs: Variation of Parameters
4.7 Forced Vibrations
5 Modeling with Systems of ODEs
5.1 Systems of ODEs and their Applications
5.1.1 Interacting Species
5.1.2 Parallel RLC Circuits
5.1.3 Multiple Tank Mixing Problems
5.2 Stability of Equilibria of Linear Systems using Eigenvalues
5.3 Solutions of Systems of Linear ODEs
5.3.1 Distinct Eigenvalues
5.3.2 Repeated Eigenvalues
5.3.3 Complex Eigenvalues
5.3.4 Solutions of Linear Modeling Problems
5.4 Solutions of Linear Nonhomogeneous Systems: Undetermined Coefficients
5.5 The Stability Criteria for Linear and Nonlinear ODEs
5.6 Phase Planes and Nullclines
6 SIR-Type Models
6.1 The Basic SIR Model with Birth and Death
6.1.1 Equilibria and Stability
6.1.2 The Basic Reproduction Number, R0
6.2 The SEIR Model
6.3 A Model with Vaccination
6.4 Sensitivity Analysis