This textbook is a second edition of the successful, Mathematical Logic: On Numbers, Sets, Structures, and Symmetry. It retains the original two parts found in the first edition, while presenting new material in the form of an added third part to the textbook. The textbook offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions.
Part I, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. The added Part III to the book is closer to what one finds in standard introductory mathematical textbooks. Definitions, theorems, and proofs that are introduced are still preceded by remarks that motivate the material, but the exposition is more formal, and includes more advanced topics. The focus is on the notion of countable categoricity, which analyzed in detail using examples from the first two parts of the book. This textbook is suitable for graduate students in mathematical logic and set theory and will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Part I, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. The added Part III to the book is closer to what one finds in standard introductory mathematical textbooks. Definitions, theorems, and proofs that are introduced are still preceded by remarks that motivate the material, but the exposition is more formal, and includes more advanced topics. The focus is on the notion of countable categoricity, which analyzed in detail using examples from the first two parts of the book. This textbook is suitable for graduate students in mathematical logic and set theory and will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"Remembering how impenetrable textbooks on mathematical logic were when he was a freshman, the author has written an introductory textbook on mathematical logic, whose main strength is the emphasis on motivating every step with detailed explanations. ... The author has clearly succeeded in writing a textbook making the reading of those impenetrable texts possible for a beginner." (Victor V. Pambuccian, zbMATH 06945597, 2021)
"This fun book can be viewed as a very gentle introduction to the notion of mathematical structure, and hence to model theory. ... Each chapter concludes with a selection of exercises of varying degrees of difficulty, often asking the reader to establish facts. Apart from the uses suggested on the book's cover, I can well imagine teaching an introduction to proof class with this textbook." (Jana Maríková, Mathematical Reviews, March 2021)
"The author has made a significant effort to present the (not so easy) material in an understandable way ... . I am sure that readers of this well-written book will experience many such satisfying moments." (Temur Kutsia, Computing Reviews, September 11, 2019)
"Such modesty and humility. Wow. Here is an outstanding book. In the beginning, we learn of the difficulties the author encountered as a student while learning some of the very topics he writes about in this book. So successfully has the author conquered his youthful difficulties that model theory is now his research specialty and is also an important component of this book." (Dennis W. Gordon, MAA Reviews, May 19, 2019)
"This fun book can be viewed as a very gentle introduction to the notion of mathematical structure, and hence to model theory. ... Each chapter concludes with a selection of exercises of varying degrees of difficulty, often asking the reader to establish facts. Apart from the uses suggested on the book's cover, I can well imagine teaching an introduction to proof class with this textbook." (Jana Maríková, Mathematical Reviews, March 2021)
"The author has made a significant effort to present the (not so easy) material in an understandable way ... . I am sure that readers of this well-written book will experience many such satisfying moments." (Temur Kutsia, Computing Reviews, September 11, 2019)
"Such modesty and humility. Wow. Here is an outstanding book. In the beginning, we learn of the difficulties the author encountered as a student while learning some of the very topics he writes about in this book. So successfully has the author conquered his youthful difficulties that model theory is now his research specialty and is also an important component of this book." (Dennis W. Gordon, MAA Reviews, May 19, 2019)