Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
I Newtonian Mechanics.- 1 Experimental facts.- 2 Investigation of the equations of motion.- II Lagrangian Mechanics.- 3 Variational principles.- 4 Lagrangian mechanics on manifolds.- 5 Oscillations.- 6 Rigid bodies.- III Hamiltonian Mechanics.- 7 Differential forms.- 8 Symplectic manifolds.- 9 Canonical formalism.- 10 Introduction to perturbation theory.- Appendix 1 Riemannian curvature.- Appendix 2 Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids.- Appendix 3 Symplectic structures on algebraic manifolds.- Appendix 4 Contact structures.- Appendix 5 Dynamical systems with symmetries.- Appendix 6 Normal forms of quadratic hamiltonians.- Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories.- Appendix 8 Theory of perturbations of conditionally periodic motion, and Kolmogorov's theorem.- Appendix 9 Poincaré's geometric theorem, its generalizations and applications.- Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters.- Appendix 11 Short wave asymptotics.- Appendix 12 Lagrangian singularities.- Appendix 13 The Korteweg-de Vries equation.- Appendix 14 Poisson structures.- Appendix 15 On elliptic coordinates.- Appendix 16 Singularities of ray systems.
I Newtonian Mechanics.- 1 Experimental facts.- 2 Investigation of the equations of motion.- II Lagrangian Mechanics.- 3 Variational principles.- 4 Lagrangian mechanics on manifolds.- 5 Oscillations.- 6 Rigid bodies.- III Hamiltonian Mechanics.- 7 Differential forms.- 8 Symplectic manifolds.- 9 Canonical formalism.- 10 Introduction to perturbation theory.- Appendix 1 Riemannian curvature.- Appendix 2 Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids.- Appendix 3 Symplectic structures on algebraic manifolds.- Appendix 4 Contact structures.- Appendix 5 Dynamical systems with symmetries.- Appendix 6 Normal forms of quadratic hamiltonians.- Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories.- Appendix 8 Theory of perturbations of conditionally periodic motion, and Kolmogorov's theorem.- Appendix 9 Poincaré's geometric theorem, its generalizations and applications.- Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters.- Appendix 11 Short wave asymptotics.- Appendix 12 Lagrangian singularities.- Appendix 13 The Korteweg-de Vries equation.- Appendix 14 Poisson structures.- Appendix 15 On elliptic coordinates.- Appendix 16 Singularities of ray systems.
I Newtonian Mechanics.- 1 Experimental facts.- 2 Investigation of the equations of motion.- II Lagrangian Mechanics.- 3 Variational principles.- 4 Lagrangian mechanics on manifolds.- 5 Oscillations.- 6 Rigid bodies.- III Hamiltonian Mechanics.- 7 Differential forms.- 8 Symplectic manifolds.- 9 Canonical formalism.- 10 Introduction to perturbation theory.- Appendix 1 Riemannian curvature.- Appendix 2 Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids.- Appendix 3 Symplectic structures on algebraic manifolds.- Appendix 4 Contact structures.- Appendix 5 Dynamical systems with symmetries.- Appendix 6 Normal forms of quadratic hamiltonians.- Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories.- Appendix 8 Theory of perturbations of conditionally periodic motion, and Kolmogorov's theorem.- Appendix 9 Poincaré's geometric theorem, its generalizations and applications.- Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters.- Appendix 11 Short wave asymptotics.- Appendix 12 Lagrangian singularities.- Appendix 13 The Korteweg-de Vries equation.- Appendix 14 Poisson structures.- Appendix 15 On elliptic coordinates.- Appendix 16 Singularities of ray systems.
I Newtonian Mechanics.- 1 Experimental facts.- 2 Investigation of the equations of motion.- II Lagrangian Mechanics.- 3 Variational principles.- 4 Lagrangian mechanics on manifolds.- 5 Oscillations.- 6 Rigid bodies.- III Hamiltonian Mechanics.- 7 Differential forms.- 8 Symplectic manifolds.- 9 Canonical formalism.- 10 Introduction to perturbation theory.- Appendix 1 Riemannian curvature.- Appendix 2 Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids.- Appendix 3 Symplectic structures on algebraic manifolds.- Appendix 4 Contact structures.- Appendix 5 Dynamical systems with symmetries.- Appendix 6 Normal forms of quadratic hamiltonians.- Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories.- Appendix 8 Theory of perturbations of conditionally periodic motion, and Kolmogorov's theorem.- Appendix 9 Poincaré's geometric theorem, its generalizations and applications.- Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters.- Appendix 11 Short wave asymptotics.- Appendix 12 Lagrangian singularities.- Appendix 13 The Korteweg-de Vries equation.- Appendix 14 Poisson structures.- Appendix 15 On elliptic coordinates.- Appendix 16 Singularities of ray systems.
Rezensionen
Second Edition
V.I. Arnol'd
Mathematical Methods of Classical Mechanics
"The book's goal is to provide an overview, pointing out highlights and unsolved problems, and putting individual results into a coherent context. It is full of historical nuggets, many of them surprising . . . The examples are especially helpful; if a particular topic seems difficult, a later example frequently tames it. The writing is refreshingly direct, never degenerating into a vocabulary lesson for its own sake. The book accomplishes the goals it has set for itself. While it is not an introduction to the field, it is an excellent overview."
-AMERICAN MATHEMATICAL MONTHLY
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826