The exponential growth of technology forces all disciplines to adjust accordingly, so they can meet the demands of a very dynamic world that heavily depends upon it. Therefore, mathematics cannot be an exception. In fact, mathematics should be the first to adjust and in fact it is. In this volume, which is a continuation of the previous three under the same title, we present state-of-the-art iterative methods for solving equations related to concrete problems from diverse areas such as applied mathematics, mathematical: biology, chemistry, economics, physics and also engineering to mention a few. Most of these methods are new and a few are old but still very popular. One major problem with iterative methods is that the convergence domain is small in general. We have introduced a technique that finds a smaller set than before containing the iterates leading to tighter Lipschitz functions than before. This way and under the same computational effort, we derive: weaker sufficient convergence criteria (leading to a wider choice of initial points); tighter error bounds on the distances involved (i.e., fewer iterates are needed to obtain a desired predetermined accuracy), and a more precise information on the location of the solution. These advantages are considered major achievements in computational disciplines. The volume requires knowledge of linear algebra, numerical functional analysis and familiarity with contemporary computing programing. It can be used by researchers, practitioners, senior undergraduate and graduate students as a source material or as a required textbook in the classroom.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.