73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
Jetzt verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
  • Format: PDF

This book demonstrates that different rudder configurations have different hydrodynamic characteristics, which are influenced by the profile, the parameters, and the specific configuration. The author proposes new regression formulas to help naval architects quickly estimate the rudder-induced forces and moments in maneuvering. Furthermore, the author proposes and validates an integrated maneuvering model for both seagoing ships and inland vessels. Using the proposed regression formulas and maneuvering model, the specific impacts of rudder configurations on inland vessel maneuverability are…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 16.26MB
Produktbeschreibung
This book demonstrates that different rudder configurations have different hydrodynamic characteristics, which are influenced by the profile, the parameters, and the specific configuration. The author proposes new regression formulas to help naval architects quickly estimate the rudder-induced forces and moments in maneuvering. Furthermore, the author proposes and validates an integrated maneuvering model for both seagoing ships and inland vessels. Using the proposed regression formulas and maneuvering model, the specific impacts of rudder configurations on inland vessel maneuverability are studied. In turn, the book demonstrates the application of Reynolds-Averaged Navier-Stokes (RANS) simulations to obtain rudder hydrodynamic characteristics, and the integration of the RANS results into maneuvering models as an accurate estimation of rudder forces and moments needed to quantify the impacts of rudder configurations on ships' maneuvering performance. In addition, the author proposes new criteria for the prediction and evaluation of inland vessel maneuverability. Simulations of ships with various rudder configurations are presented, in order to analyze the impacts of rudder configurations on ship maneuverability in different classic and proposed test maneuvers. Offering essential guidance on the effects of rudders for inland vessel maneuverability, and helping practical engineers make informed design choices, the book is of interest to researchers and academics in the field of naval engineering, as well as students of naval architecture. Industrial practitioners working on ship design may also find it beneficial.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Jialun Liu is an Associate Professor in Intelligent Transportation Systems Research Center, Wuhan University of Technology, and a member of National Engineering Research Center for Water Transport Safety. From 2006 to 2010, he studied at Wuhan University of Technology, Wuhan, China, specializing in Navigation Technology. From 2008 to 2010, he minored in Japanese at Huazhong University of Science and Technology, Wuhan, China. He obtained his B.Sc. and B.A. degrees in 2010 from these two universities, respectively. After that, he was recommended to continue master education at Wuhan University of Technology in Traffic Engineering and Control. In 2012, he was founded by China Scholarship Council and started his Ph.D. research at Delft University of Technology, Delft, the Netherlands. In 2013, he received his M.Sc. degree. From 2012 to 2017, Jialun Liu worked at the section of Ship Design, Operation, and Production in the Department of Marine and Transportation Technology. From March 2017, he started working at Wuhan University of Technology. He received "Chutian Excellent Young Scholar" in 2017 and got promoted to be an Associate Professor. He has been appointed as reviewers of Ocean Engineering, Ships and Offshore Structures, Journal of Marine Science and Technology, International Journal of Naval Architecture and Ocean Engineering, and other international journals and conferences. He has interests in maneuvering modeling and motion control of ships, applications of computational fluid dynamics methods to maritime engineering, developments of autonomous ships, and functional testing of smart ships.