Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across-from detailed electrochemical models to algorithms used for real time estimation on a microchip-is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework-often invoking basic principles of thermodynamics or transport phenomena-and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well.
The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.