Mathematical Programming with Data Perturbations (eBook, PDF)
Redaktion: Fiacco, Anthony V.
287,95 €
287,95 €
inkl. MwSt.
Sofort per Download lieferbar
144 °P sammeln
287,95 €
Als Download kaufen
287,95 €
inkl. MwSt.
Sofort per Download lieferbar
144 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
287,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
144 °P sammeln
Mathematical Programming with Data Perturbations (eBook, PDF)
Redaktion: Fiacco, Anthony V.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Describes various methodologies for sensitivity, stability and approximation analysis of mathematical programming and related problem structures involving parameters. This text covers such areas as the effect of perturbations on the performance of algorithms, and approximation techniques for optimal control problems.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 20.65MB
Andere Kunden interessierten sich auch für
- Kendall AtkinsonSpectral Methods Using Multivariate Polynomials On The Unit Ball (eBook, PDF)51,95 €
- Julien GuillodPython Programming for Mathematics (eBook, PDF)46,95 €
- Nabil NassifIntroduction to Numerical Analysis and Scientific Computing (eBook, PDF)109,95 €
- Bilal AyyubNumerical Analysis for Engineers (eBook, PDF)113,95 €
- Yinan LiFormal Methods for Control of Nonlinear Systems (eBook, PDF)51,95 €
- Sheng XuAn Introduction to Scientific Computing with MATLAB® and Python Tutorials (eBook, PDF)59,95 €
- Xinzhi LiuComparison Methods and Stability Theory (eBook, PDF)180,95 €
-
-
-
Describes various methodologies for sensitivity, stability and approximation analysis of mathematical programming and related problem structures involving parameters. This text covers such areas as the effect of perturbations on the performance of algorithms, and approximation techniques for optimal control problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 456
- Erscheinungstermin: 23. September 2020
- Englisch
- ISBN-13: 9781000117110
- Artikelnr.: 60149893
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 456
- Erscheinungstermin: 23. September 2020
- Englisch
- ISBN-13: 9781000117110
- Artikelnr.: 60149893
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
ANTHONY V. FIACCO is Professor Emeritus of Operations Research and Applied Science at George Washington University, Washington, D.C. From 1960 to 1971, Dr. Fiacco was an Operations Analyst for the Research Analysis Corporation in McLean, Virginia, where he was Project Chairman of a study that pioneered several breakthroughs in nonlinear programming (NLP) methodology. He is the author or coauthor of numerous papers on NLP theory and applications, the coauthor with Garth P. McCormick in 1968 of a Lanchester prize-winning book on barrier and penalty function methodology, and the editor of several books, including Mathematical Programming with Data Perturbations I and II (both titles, Marcel Dekker, Inc.). A prominent contributor to the development of computable methods for sensitivity and stability analysis, Dr. Fiacco received the Ph.D. degree 1967 in applied mathematics from Northwestern University, Evanston, Illinois. Since 1979, he has organized, at the George Washington University, the only annual conference completely devoted to sensitivity and stability issues.
Discretization and mesh-independent of Newton's method for generalized
differentiability of optimal solutions in non-linear parametric
optimization; characterisations of Lipschitzian stability in nonlinear
programming; on second order sufficient conditions for structured nonlinear
programs in infinite-dimensional function spaces; algorithmic stability
analysis for certain trust region methods; a note on using linear knowledge
to solve efficiency linear programs specified with approximate data; on the
role of the Mangasarian-Fromovitz constraint qualification for penalty-,
exact penalty-, and Lagrange multiplier methods; Hoffman's error bound for
systems of convex functions and applications to nonlinear optimization; on
well-posedness and stability analysis optimization; convergence of
approximations to nonlinear optimal control problems; a perturbation-based
duality classification for max-flow min-cut problems of Strang and Iri;
central and peripheral results in the study of marginal and performance
functions; topological stability of feasible sets in semi-infinite
optimization - a tutorial; solution existence for infinite quadratic
programming; sensitivity analysis of nonlinear programming problems via
minimax functions; parametric linear complementary problems; sufficient
conditions for weak sharp minima of order two and directional derivatives
of the value function.
differentiability of optimal solutions in non-linear parametric
optimization; characterisations of Lipschitzian stability in nonlinear
programming; on second order sufficient conditions for structured nonlinear
programs in infinite-dimensional function spaces; algorithmic stability
analysis for certain trust region methods; a note on using linear knowledge
to solve efficiency linear programs specified with approximate data; on the
role of the Mangasarian-Fromovitz constraint qualification for penalty-,
exact penalty-, and Lagrange multiplier methods; Hoffman's error bound for
systems of convex functions and applications to nonlinear optimization; on
well-posedness and stability analysis optimization; convergence of
approximations to nonlinear optimal control problems; a perturbation-based
duality classification for max-flow min-cut problems of Strang and Iri;
central and peripheral results in the study of marginal and performance
functions; topological stability of feasible sets in semi-infinite
optimization - a tutorial; solution existence for infinite quadratic
programming; sensitivity analysis of nonlinear programming problems via
minimax functions; parametric linear complementary problems; sufficient
conditions for weak sharp minima of order two and directional derivatives
of the value function.
Discretization and mesh-independent of Newton's method for generalized
differentiability of optimal solutions in non-linear parametric
optimization; characterisations of Lipschitzian stability in nonlinear
programming; on second order sufficient conditions for structured nonlinear
programs in infinite-dimensional function spaces; algorithmic stability
analysis for certain trust region methods; a note on using linear knowledge
to solve efficiency linear programs specified with approximate data; on the
role of the Mangasarian-Fromovitz constraint qualification for penalty-,
exact penalty-, and Lagrange multiplier methods; Hoffman's error bound for
systems of convex functions and applications to nonlinear optimization; on
well-posedness and stability analysis optimization; convergence of
approximations to nonlinear optimal control problems; a perturbation-based
duality classification for max-flow min-cut problems of Strang and Iri;
central and peripheral results in the study of marginal and performance
functions; topological stability of feasible sets in semi-infinite
optimization - a tutorial; solution existence for infinite quadratic
programming; sensitivity analysis of nonlinear programming problems via
minimax functions; parametric linear complementary problems; sufficient
conditions for weak sharp minima of order two and directional derivatives
of the value function.
differentiability of optimal solutions in non-linear parametric
optimization; characterisations of Lipschitzian stability in nonlinear
programming; on second order sufficient conditions for structured nonlinear
programs in infinite-dimensional function spaces; algorithmic stability
analysis for certain trust region methods; a note on using linear knowledge
to solve efficiency linear programs specified with approximate data; on the
role of the Mangasarian-Fromovitz constraint qualification for penalty-,
exact penalty-, and Lagrange multiplier methods; Hoffman's error bound for
systems of convex functions and applications to nonlinear optimization; on
well-posedness and stability analysis optimization; convergence of
approximations to nonlinear optimal control problems; a perturbation-based
duality classification for max-flow min-cut problems of Strang and Iri;
central and peripheral results in the study of marginal and performance
functions; topological stability of feasible sets in semi-infinite
optimization - a tutorial; solution existence for infinite quadratic
programming; sensitivity analysis of nonlinear programming problems via
minimax functions; parametric linear complementary problems; sufficient
conditions for weak sharp minima of order two and directional derivatives
of the value function.