Mathematics and Philosophy (eBook, PDF)
Alle Infos zum eBook verschenken
Mathematics and Philosophy (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book, which studies the links between mathematics and philosophy, highlights a reversal. Initially, the (Greek) philosophers were also mathematicians (geometers). Their vision of the world stemmed from their research in this field (rational and irrational numbers, problem of duplicating the cube, trisection of the angle...). Subsequently, mathematicians freed themselves from philosophy (with Analysis, differential Calculus, Algebra, Topology, etc.), but their researches continued to inspire philosophers (Descartes, Leibniz, Hegel, Husserl, etc.). However, from a certain level of…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.12MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 352
- Erscheinungstermin: 23. Mai 2018
- Englisch
- ISBN-13: 9781119527794
- Artikelnr.: 53028264
- Verlag: Wiley
- Seitenzahl: 352
- Erscheinungstermin: 23. Mai 2018
- Englisch
- ISBN-13: 9781119527794
- Artikelnr.: 53028264
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- the mysterious number 52 3.2. The error of the "squarers" 53 3.3. The explicit computation of
55 3.4. Trigonometric considerations 57 3.5. The paradoxical philosophy of Nicholas of Cusa 59 3.5.1. An attempt at computing an approximate value for
59 3.5.2. Philosophical extension 61 3.6. What came next and the conclusion to the history of
63 3.6.1. The age of infinite products 64 3.6.2. Machin's algorithm 64 3.6.3. The problem of the nature of
65 3.6.4. Numerical and philosophical transcendance: Kant, Lambert and Legendre 66 Part 2. Mathematics Becomes More Powerful 69 Introduction to Part 2 71 Chapter 4. Exploring Mathesis in the 17th Century 75 4.1. The innovations of Cartesian mathematics 76 4.2. The "plan" for Descartes' Geometry 79 4.3. Studying the classification of curves 79 4.3.1. Possible explanations for the mistakes made by the Ancients 81 4.3.2. Conditions for the admissibility of curves in geometry 83 4.4. Legitimate constructions 85 4.5. Scientific consequences of Cartesian definitions 87 4.6. Metaphysical consequences of Cartesian mathematics 88 Chapter 5. The Question of Infinitesimals 91 5.1. Antiquity - the prehistory of the infinite 92 5.1.1. Infinity as Anaximander saw it 92 5.1.2. The problem of irrationals and Zeno's paradoxes 93 5.1.3. Aristotle and the dual nature of the Infinite 96 5.2. The birth of the infinitesimal calculus 98 5.2.1. Newton's Writings 99 5.2.2. Leibniz's contribution 101 5.2.3. The impact of calculus on Leibnizian philosophy 105 5.2.3.1. Small perceptions and differentials 105 5.2.3.2. Matter and living beings 109 5.2.3.3. The image of order 110 5.2.4. The epistemological problem 117 Chapter 6. Complexes, Logarithms and Exponentials 121 6.1. The road to complex numbers 122 6.2. Logarithms and exponentials 125 6.3. De Moivre's and Euler's formulas 128 6.4. Consequences on Hegelian philosophy 130 6.5. Euler's formula 132 6.6. Euler, Diderot and the existence of God 133 6.7. The approximation of functions 134 6.7.1. Taylor's formula 135 6.7.2. MacLaurin's formula 135 6.8. Wronski's philosophy and mathematics 137 6.8.1. The Supreme Law of Mathematics 138 6.8.2. Philosophical interpretation 142 6.9. Historical positivism and spiritual metaphysics 143 6.9.1. Comte's vision of mathematics 143 6.9.2. Renouvier's reaction 146 6.9.3. Spiritualist derivatives 147 6.10. The physical interest of complex numbers 148 6.11. Consequences on Bergsonian philosophy 150 Part 3. Significant Advances 155 Introduction to Part 3 157 Chapter 7. Chance, Probability and Metaphysics 161 7.1. Calculating probability: a brief history 162 7.2. Pascal's "wager" 166 7.2.1. The Pensées passage 166 7.2.2. The formal translation 167 7.2.3. Criticism and commentary 167 7.2.3.1. Laplace's criticism 167 7.2.3.2. Emile Borel's observation 169 7.2.3.3. Decision theory 170 7.2.3.4. The non-standard analysis framework 171 7.3. Social applications, from Condorcet to Musil 172 7.4. Chance, coincidences and omniscience 174 Chapter 8. The Geometric Revolution 179 8.1. The limits of the Euclidean demonstrative ideal 180 8.2. Contesting Euclidean geometry 183 8.3. Bolyai's and Lobatchevsky geometries 184 8.4. Riemann's elliptical geometry 191 8.5. Bachelard and the philosophy of "non" 194 8.6. The unification of Geometry by Beltrami and Klein 196 8.7. Hilbert's axiomatization 198 8.8. The reception of non-Euclidean geometries 200 8.9. A distant impact: Finsler's philosophy 200 Chapter 9. Fundamental Sets and Structures 203 9.1. Controversies surrounding the infinitely large 203 9.2. The concept of "the power of a set" 207 9.2.1. The "countable" and the "continuous" 208 9.2.2. The uniqueness of the continuum 209 9.2.3. Continuum hypothesis and generalized continuum hypothesis . . . 212 9.3. The development of set theory 213 9.4. The epistemological route and others 218 9.5. Analytical philosophy and its masters 222 9.6. Husserl with Gödel? 225 9.7. Appendix: Gödel's ontological proof 226 Part 4. The Advent of Mathematician-Philosophers 229 Introduction to Part 4 231 Chapter 10. The Rise of Algebra 233 10.1. Boolean algebra and its consequences 234 10.2. The birth of general algebra 237 10.3. Group theory 238 10.4. Linear algebra and non-commutative algebra 241 10.5. Clifford: a philosopher-mathematician 245 Chapter 11. Topology and Differential Geometry 253 11.1. Topology 253 11.1.1. Continuity and neighborhood 254 11.1.2. Fundamental definitions and theorems 255 11.1.3. Properties of topological spaces 257 11.1.4. Philosophy of classifications versus topology of the being 261 11.2. Models of differential geometry 262 11.2.1. Space as a support to thought 262 11.2.2. The general concept of manifold 263 11.2.3. The formal concept of differential manifold 264 11.2.4. The general theory of differential manifold 265 11.2.5. G-structures and connections 266 11.3. Some philosophical consequences 268 11.3.1. Whitehead's philosophy and relativity 269 11.3.2. Lautman's singular work 270 11.3.3. Thom and the catastrophe theory 273 Chapter 12. Mathematical Research and Philosophy 279 12.1. The different domains 279 12.2. The development of classical mathematics 282 12.3. Number theory and algebra 282 12.4. Geometry and algebraic topology 284 12.5. Category and sheaves: tools that help in globalization 286 12.5.1. Category theory 286 12.5.2. The Sheaf theory 292 12.5.3. Link to philosophy 294 12.5.4. Philosophical impact 295 12.6. Grothendieck's unitary vision 295 12.6.1. Schemes 295 12.6.2. Topoi 296 12.6.3. Motives 298 12.6.4. Philosophical consequences of motives 301 Conclusion 305 Bibliography 311 Index 327
- the mysterious number 52 3.2. The error of the "squarers" 53 3.3. The explicit computation of
55 3.4. Trigonometric considerations 57 3.5. The paradoxical philosophy of Nicholas of Cusa 59 3.5.1. An attempt at computing an approximate value for
59 3.5.2. Philosophical extension 61 3.6. What came next and the conclusion to the history of
63 3.6.1. The age of infinite products 64 3.6.2. Machin's algorithm 64 3.6.3. The problem of the nature of
65 3.6.4. Numerical and philosophical transcendance: Kant, Lambert and Legendre 66 Part 2. Mathematics Becomes More Powerful 69 Introduction to Part 2 71 Chapter 4. Exploring Mathesis in the 17th Century 75 4.1. The innovations of Cartesian mathematics 76 4.2. The "plan" for Descartes' Geometry 79 4.3. Studying the classification of curves 79 4.3.1. Possible explanations for the mistakes made by the Ancients 81 4.3.2. Conditions for the admissibility of curves in geometry 83 4.4. Legitimate constructions 85 4.5. Scientific consequences of Cartesian definitions 87 4.6. Metaphysical consequences of Cartesian mathematics 88 Chapter 5. The Question of Infinitesimals 91 5.1. Antiquity - the prehistory of the infinite 92 5.1.1. Infinity as Anaximander saw it 92 5.1.2. The problem of irrationals and Zeno's paradoxes 93 5.1.3. Aristotle and the dual nature of the Infinite 96 5.2. The birth of the infinitesimal calculus 98 5.2.1. Newton's Writings 99 5.2.2. Leibniz's contribution 101 5.2.3. The impact of calculus on Leibnizian philosophy 105 5.2.3.1. Small perceptions and differentials 105 5.2.3.2. Matter and living beings 109 5.2.3.3. The image of order 110 5.2.4. The epistemological problem 117 Chapter 6. Complexes, Logarithms and Exponentials 121 6.1. The road to complex numbers 122 6.2. Logarithms and exponentials 125 6.3. De Moivre's and Euler's formulas 128 6.4. Consequences on Hegelian philosophy 130 6.5. Euler's formula 132 6.6. Euler, Diderot and the existence of God 133 6.7. The approximation of functions 134 6.7.1. Taylor's formula 135 6.7.2. MacLaurin's formula 135 6.8. Wronski's philosophy and mathematics 137 6.8.1. The Supreme Law of Mathematics 138 6.8.2. Philosophical interpretation 142 6.9. Historical positivism and spiritual metaphysics 143 6.9.1. Comte's vision of mathematics 143 6.9.2. Renouvier's reaction 146 6.9.3. Spiritualist derivatives 147 6.10. The physical interest of complex numbers 148 6.11. Consequences on Bergsonian philosophy 150 Part 3. Significant Advances 155 Introduction to Part 3 157 Chapter 7. Chance, Probability and Metaphysics 161 7.1. Calculating probability: a brief history 162 7.2. Pascal's "wager" 166 7.2.1. The Pensées passage 166 7.2.2. The formal translation 167 7.2.3. Criticism and commentary 167 7.2.3.1. Laplace's criticism 167 7.2.3.2. Emile Borel's observation 169 7.2.3.3. Decision theory 170 7.2.3.4. The non-standard analysis framework 171 7.3. Social applications, from Condorcet to Musil 172 7.4. Chance, coincidences and omniscience 174 Chapter 8. The Geometric Revolution 179 8.1. The limits of the Euclidean demonstrative ideal 180 8.2. Contesting Euclidean geometry 183 8.3. Bolyai's and Lobatchevsky geometries 184 8.4. Riemann's elliptical geometry 191 8.5. Bachelard and the philosophy of "non" 194 8.6. The unification of Geometry by Beltrami and Klein 196 8.7. Hilbert's axiomatization 198 8.8. The reception of non-Euclidean geometries 200 8.9. A distant impact: Finsler's philosophy 200 Chapter 9. Fundamental Sets and Structures 203 9.1. Controversies surrounding the infinitely large 203 9.2. The concept of "the power of a set" 207 9.2.1. The "countable" and the "continuous" 208 9.2.2. The uniqueness of the continuum 209 9.2.3. Continuum hypothesis and generalized continuum hypothesis . . . 212 9.3. The development of set theory 213 9.4. The epistemological route and others 218 9.5. Analytical philosophy and its masters 222 9.6. Husserl with Gödel? 225 9.7. Appendix: Gödel's ontological proof 226 Part 4. The Advent of Mathematician-Philosophers 229 Introduction to Part 4 231 Chapter 10. The Rise of Algebra 233 10.1. Boolean algebra and its consequences 234 10.2. The birth of general algebra 237 10.3. Group theory 238 10.4. Linear algebra and non-commutative algebra 241 10.5. Clifford: a philosopher-mathematician 245 Chapter 11. Topology and Differential Geometry 253 11.1. Topology 253 11.1.1. Continuity and neighborhood 254 11.1.2. Fundamental definitions and theorems 255 11.1.3. Properties of topological spaces 257 11.1.4. Philosophy of classifications versus topology of the being 261 11.2. Models of differential geometry 262 11.2.1. Space as a support to thought 262 11.2.2. The general concept of manifold 263 11.2.3. The formal concept of differential manifold 264 11.2.4. The general theory of differential manifold 265 11.2.5. G-structures and connections 266 11.3. Some philosophical consequences 268 11.3.1. Whitehead's philosophy and relativity 269 11.3.2. Lautman's singular work 270 11.3.3. Thom and the catastrophe theory 273 Chapter 12. Mathematical Research and Philosophy 279 12.1. The different domains 279 12.2. The development of classical mathematics 282 12.3. Number theory and algebra 282 12.4. Geometry and algebraic topology 284 12.5. Category and sheaves: tools that help in globalization 286 12.5.1. Category theory 286 12.5.2. The Sheaf theory 292 12.5.3. Link to philosophy 294 12.5.4. Philosophical impact 295 12.6. Grothendieck's unitary vision 295 12.6.1. Schemes 295 12.6.2. Topoi 296 12.6.3. Motives 298 12.6.4. Philosophical consequences of motives 301 Conclusion 305 Bibliography 311 Index 327