105,95 €
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
53 °P sammeln
105,95 €
105,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
53 °P sammeln
Als Download kaufen
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
53 °P sammeln
Jetzt verschenken
105,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
53 °P sammeln
  • Format: ePub

Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches presents various theoretical and numerical studies on mechanical behaviors of carbon nanotubes. The main theoretical aspects included in the book contain classical molecular dynamics simulation, atomistic-continuum theory, atomic finite element method, continuum plate, nonlocal continuum plate, and shell models.
Detailed coverage is also given to structural and elastic properties, trace of large deformation, buckling and post-buckling behaviors, fracture, vibration characteristics, wave propagation, and the most
…mehr

Produktbeschreibung
Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches presents various theoretical and numerical studies on mechanical behaviors of carbon nanotubes. The main theoretical aspects included in the book contain classical molecular dynamics simulation, atomistic-continuum theory, atomic finite element method, continuum plate, nonlocal continuum plate, and shell models.

Detailed coverage is also given to structural and elastic properties, trace of large deformation, buckling and post-buckling behaviors, fracture, vibration characteristics, wave propagation, and the most promising engineering applications.

This book not only illustrates the theoretical and numerical methods for analyzing the mechanical behavior of carbon nanotubes, but also contains computational results from experiments that have already taken place.

  • Covers various theoretical and numerical studies, giving readers a greater understanding of the mechanical behavior of carbon nanotubes
  • Includes multiscale methods that provide the advantages of atomistic and continuum approaches, helping readers solve complex, large-system engineering problems
  • Allows engineers to create more efficient carbon nanotube structures and devices

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Kim Meow Liew is the Head and Chair Professor of Civil Engineering at City University of Hong Kong, Hong Kong. His research activities encompass computational mechanics, optimization, numerical methods, nanomechanics and nanomaterials, multi-scale modeling, simulation and bioengineering. He is the Editor-in-Chief of International Review of Civil Engineering (Praiseworthy Prize) and Journal of Modeling in Mechanics & Materials (De Gruyter) and Associate Editor of Journal of Vibration and Control (Sage) and Journal of Nanoscience Letters (Simplex Academic Publishers). He serves on the editorial boards for more than two dozen journals. He has contributed over 750 articles to peer-reviewed journals, and is a Fellow of the HKIE (Hong Kong), ASME (USA), IMechE (UK) and IES (Singapore). He is listed by the Institute for Scientific Information (ISI) as a Highly Cited Researcher in engineering.