Mechanical Characterization of Materials and Wave Dispersion (eBook, ePUB)
Redaktion: Chevalier, Yvon; Tuong, Jean Vinh
Alle Infos zum eBook verschenken
Mechanical Characterization of Materials and Wave Dispersion (eBook, ePUB)
Redaktion: Chevalier, Yvon; Tuong, Jean Vinh
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Over the last 50 years, the various available methods of investigating dynamic properties of materials have resulted in significant advances in this area of materials science. Dynamic tests have also recently proven to be as efficient as static tests, and have the advantage that they are often easier to use at lower frequency. This book explores dynamic testing, the methods used, and the experiments performed, placing a particular emphasis on the context of bounded medium elastodynamics. The book initially focuses on the complements of continuum mechanics before moving on to the various types…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 7.12MB
- Mechanical Characterization of Materials and Wave Dispersion (eBook, PDF)266,99 €
- Andrei GrebennikovRF and Microwave Transmitter Design (eBook, ePUB)167,99 €
- Wen GeyiFoundations of Antenna Radiation Theory (eBook, ePUB)115,99 €
- Constantine A. BalanisAntenna Theory (eBook, ePUB)140,99 €
- Xuefeng YinPropagation Channel Characterization, Parameter Estimation, and Modeling for Wireless Communications (eBook, ePUB)123,99 €
- Baixiao ChenSynthetic Impulse and Aperture Radar (SIAR) (eBook, ePUB)139,99 €
- Wearable and Neuronic Antennas for Medical and Wireless Applications (eBook, ePUB)150,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 640
- Erscheinungstermin: 4. März 2013
- Englisch
- ISBN-13: 9781118623152
- Artikelnr.: 37651225
- Verlag: John Wiley & Sons
- Seitenzahl: 640
- Erscheinungstermin: 4. März 2013
- Englisch
- ISBN-13: 9781118623152
- Artikelnr.: 37651225
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
(z, t) and
(z, t) 258 Appendix 5.E A simpler solution to the problem analyzed in Appendix 5.D 263 Appendix 5.F Onobiono's and Zienkievics' solutions using finite element method for warping function
265 Appendix 5.G Formulation of equations of motion for an off-axis anisotropic rod submitted to coupled torsion and bending vibrations 273 Appendix 5.H Relative group velocity versus relative wave number 279 Chapter 6 Bending Vibration of a Rod 291 Dominique LE NIZHERY 6.1 Introduction 291 6.1.1 Short bibliography of dynamic bending of a beam 292 6.2 Bending vibration of straight beam by elementary theory 293 6.3 Higher approximation theory of bending vibration 299 6.4 Bending vibration of an off-axis anisotropic rod 313 6.5 Concluding remarks 324 6.6 Bibliography 326 6.7 Table of symbols 327 6.8 Appendices 328 Appendix 6.A Timoshenko's correcting coefficients for anisotropic and isotropic materials 328 Appendix 6.B Correcting coefficient using Mindlin's method 333 Appendix 6.C Dispersion curves for various equations of motion 334 Appendix 6.D Change of reference axes and elastic coefficients for an anisotropic rod 337 Chapter 7 Longitudinal Vibration of a Rod 339 Yvon CHEVALIER and Maurice TOURATIER 7.1 Presentation 339 7.2 Bishop's equations of motion 343 7.3 Improved Bishop's equation of motion 345 7.4 Bishop's equation for orthotropic materials 346 7.5 Eigenfrequency equations for a free-free rod 346 7.6 Touratier's equations of motion of longitudinal waves 350 7.7 Wave dispersion relationships 367 7.8 Short rod and boundary conditions 393 7.9 Concluding remarks about Touratier's theory 395 7.10 Bibliography 396 7.11 List of symbols 397 7.12 Appendices 399 Appendix 7.A an outline of some studies on longitudinal vibration of rods with rectangular cross-section 399 Appendix 7.B Formulation of Bishop's equation by Hamilton's principle by Rao and Rao 401 Appendix 7.C Dimensionless Bishop's equations of motion and dimensionless boundary conditions 405 Appendix 7.D Touratier's equations of motion by variational calculus 408 Appendix 7.E Calculation of correcting factor q (Cijkl) 409 Appendix 7.F Stationarity of functional J and boundary equations 419 Appendix 7.G On the possible solutions of eigenvalue equations 419 Chapter 8 Very Low Frequency Vibration of a Rod by Le Rolland-Sorin's Double Pendulum 425 Mostefa ARCHI and Jean-Baptiste CASIMIR 8.1 Introduction 425 8.2 Short bibliography 427 8.3 Flexural vibrations of a rod using coupled pendulums 427 8.4 Torsional vibration of a beam by double pendulum 434 8.5 Complex compliance coefficient of viscoelastic materials 436 8.6 Elastic stiffness of an off-axis rod 443 8.7 Bibliography 449 8.8 List of symbols 450 8.9 Appendices 452 Appendix 8.A Closed-form expression of
1 or
2 oscillation angles of the pendulums and practical considerations 452 Appendix 8.B Influence of the highest eigenfrequency
3 on the pendulum oscillations in the expression of
1 (t) 457 Appendix 8.C Coefficients a of compliance matrix after a change of axes for transverse isotropic material 458 Appendix 8.D Mathematical formulation of the simultaneous bending and torsion of an off-axis rectangular rod 460 Appendix 8.E Details on calculations of s35 and
13 of transverse isotropic materials 486 Chapter 9 Vibrations of a Ring and Hollow Cylinder 493 Jean Tuong VINH 9.1 Introduction 493 9.2 Equations of motion of a circular ring with rectangular cross-section 494 9.3 Bibliography 502 9.4 Appendices 503 Appendix 9.A Expression u (
) in the three subintervals delimited by the roots of equation [9.33] 503 Chapter 10 Characterization of Isotropic and Anisotropic Materials by Progressive Ultrasonic Waves 513 Patrick GARCEAU 10.1 Presentation of the method 513 10.2 Propagation of elastic waves in an infinite medium 515 10.3 Progressive plane waves 516 10.4 Polarization of three kinds of waves 518 10.5 Propagation in privileged directions and phase velocity calculations 519 10.6 Slowness surface and wave propagation through a separation surface 528 10.7 Propagation of an elastic wave through an anisotropic blade with two parallel faces 535 10.8 Concluding remarks 542 10.9 Bibliography 543 10.10 List of Symbols 544 10.11 Appendices 546 Appendix 10.A Energy velocity, group velocity, Poynting vector 546 Appendix 10.B Slowness surface and energy velocity 553 Chapter 11 Viscoelastic Moduli of Materials Deduced from Harmonic Responses of Beams 555 Tibi BEDA, Christine ESTEOULE, Mohamed SOULA and Jean Tuong VINH 11.1 Introduction 555 11.2 Guidelines for practicians 557 11.3 Solution of a viscoelastic problem using the principle of correspondence 558 11.4 Viscoelastic solution of equation of motions 564 11.5 Viscoelastic moduli using equations of higher approximation degree 579 11.6 Bibliography 588 11.7 Appendices 589 Appendix 11.A Transmissibility function of a rod submitted to longitudinal vibration (elementary equation of motion) 589 Appendix 11.B Newton-Raphson's method applied to a couple of functions of two real variables 1 and 2 components of 590 Appendix 11.C Transmissibility function of a clamped-free Bernoulli's rod submitted to bending vibration 591 Appendix 11.D Complex transmissibility function of a clamped-free Bernoulli's rod and its decomposition into two functions of real variables 593 Appendix 11.E Eigenvalue equation of clamped-free Timoshenko's rod 594 Appendix 11.F Transmissibility function of clamped-free Timoshenko's rod 595 Chapter 12 Continuous Element Method Utilized as a Solution to Inverse Problems in Elasticity and Viscoelasticity 599 Jean-Baptiste CASIMIR 12.1 Introduction 599 12.2 Overview of the continuous element method 601 12.3 Boundary conditions and their implications in the transfer matrix 608 12.4 Extensional vibration of straight beams (elementary theory) 609 12.5 The direct problem of beams submitted to bending vibration 612 12.6 Successive calculation steps to obtain a transfer matrix and simple displacement transfer function 620 12.7 Continuous element method adapted for solving an inverse problem in elasticity and viscoelasticity 622 12.8 Bibliography 624 12.9 Appendices 624 Appendix 12.A Wavenumbers deduced from Timoshenko's equation 624 List of Authors 629 Index 631
(z, t) and
(z, t) 258 Appendix 5.E A simpler solution to the problem analyzed in Appendix 5.D 263 Appendix 5.F Onobiono's and Zienkievics' solutions using finite element method for warping function
265 Appendix 5.G Formulation of equations of motion for an off-axis anisotropic rod submitted to coupled torsion and bending vibrations 273 Appendix 5.H Relative group velocity versus relative wave number 279 Chapter 6 Bending Vibration of a Rod 291 Dominique LE NIZHERY 6.1 Introduction 291 6.1.1 Short bibliography of dynamic bending of a beam 292 6.2 Bending vibration of straight beam by elementary theory 293 6.3 Higher approximation theory of bending vibration 299 6.4 Bending vibration of an off-axis anisotropic rod 313 6.5 Concluding remarks 324 6.6 Bibliography 326 6.7 Table of symbols 327 6.8 Appendices 328 Appendix 6.A Timoshenko's correcting coefficients for anisotropic and isotropic materials 328 Appendix 6.B Correcting coefficient using Mindlin's method 333 Appendix 6.C Dispersion curves for various equations of motion 334 Appendix 6.D Change of reference axes and elastic coefficients for an anisotropic rod 337 Chapter 7 Longitudinal Vibration of a Rod 339 Yvon CHEVALIER and Maurice TOURATIER 7.1 Presentation 339 7.2 Bishop's equations of motion 343 7.3 Improved Bishop's equation of motion 345 7.4 Bishop's equation for orthotropic materials 346 7.5 Eigenfrequency equations for a free-free rod 346 7.6 Touratier's equations of motion of longitudinal waves 350 7.7 Wave dispersion relationships 367 7.8 Short rod and boundary conditions 393 7.9 Concluding remarks about Touratier's theory 395 7.10 Bibliography 396 7.11 List of symbols 397 7.12 Appendices 399 Appendix 7.A an outline of some studies on longitudinal vibration of rods with rectangular cross-section 399 Appendix 7.B Formulation of Bishop's equation by Hamilton's principle by Rao and Rao 401 Appendix 7.C Dimensionless Bishop's equations of motion and dimensionless boundary conditions 405 Appendix 7.D Touratier's equations of motion by variational calculus 408 Appendix 7.E Calculation of correcting factor q (Cijkl) 409 Appendix 7.F Stationarity of functional J and boundary equations 419 Appendix 7.G On the possible solutions of eigenvalue equations 419 Chapter 8 Very Low Frequency Vibration of a Rod by Le Rolland-Sorin's Double Pendulum 425 Mostefa ARCHI and Jean-Baptiste CASIMIR 8.1 Introduction 425 8.2 Short bibliography 427 8.3 Flexural vibrations of a rod using coupled pendulums 427 8.4 Torsional vibration of a beam by double pendulum 434 8.5 Complex compliance coefficient of viscoelastic materials 436 8.6 Elastic stiffness of an off-axis rod 443 8.7 Bibliography 449 8.8 List of symbols 450 8.9 Appendices 452 Appendix 8.A Closed-form expression of
1 or
2 oscillation angles of the pendulums and practical considerations 452 Appendix 8.B Influence of the highest eigenfrequency
3 on the pendulum oscillations in the expression of
1 (t) 457 Appendix 8.C Coefficients a of compliance matrix after a change of axes for transverse isotropic material 458 Appendix 8.D Mathematical formulation of the simultaneous bending and torsion of an off-axis rectangular rod 460 Appendix 8.E Details on calculations of s35 and
13 of transverse isotropic materials 486 Chapter 9 Vibrations of a Ring and Hollow Cylinder 493 Jean Tuong VINH 9.1 Introduction 493 9.2 Equations of motion of a circular ring with rectangular cross-section 494 9.3 Bibliography 502 9.4 Appendices 503 Appendix 9.A Expression u (
) in the three subintervals delimited by the roots of equation [9.33] 503 Chapter 10 Characterization of Isotropic and Anisotropic Materials by Progressive Ultrasonic Waves 513 Patrick GARCEAU 10.1 Presentation of the method 513 10.2 Propagation of elastic waves in an infinite medium 515 10.3 Progressive plane waves 516 10.4 Polarization of three kinds of waves 518 10.5 Propagation in privileged directions and phase velocity calculations 519 10.6 Slowness surface and wave propagation through a separation surface 528 10.7 Propagation of an elastic wave through an anisotropic blade with two parallel faces 535 10.8 Concluding remarks 542 10.9 Bibliography 543 10.10 List of Symbols 544 10.11 Appendices 546 Appendix 10.A Energy velocity, group velocity, Poynting vector 546 Appendix 10.B Slowness surface and energy velocity 553 Chapter 11 Viscoelastic Moduli of Materials Deduced from Harmonic Responses of Beams 555 Tibi BEDA, Christine ESTEOULE, Mohamed SOULA and Jean Tuong VINH 11.1 Introduction 555 11.2 Guidelines for practicians 557 11.3 Solution of a viscoelastic problem using the principle of correspondence 558 11.4 Viscoelastic solution of equation of motions 564 11.5 Viscoelastic moduli using equations of higher approximation degree 579 11.6 Bibliography 588 11.7 Appendices 589 Appendix 11.A Transmissibility function of a rod submitted to longitudinal vibration (elementary equation of motion) 589 Appendix 11.B Newton-Raphson's method applied to a couple of functions of two real variables 1 and 2 components of 590 Appendix 11.C Transmissibility function of a clamped-free Bernoulli's rod submitted to bending vibration 591 Appendix 11.D Complex transmissibility function of a clamped-free Bernoulli's rod and its decomposition into two functions of real variables 593 Appendix 11.E Eigenvalue equation of clamped-free Timoshenko's rod 594 Appendix 11.F Transmissibility function of clamped-free Timoshenko's rod 595 Chapter 12 Continuous Element Method Utilized as a Solution to Inverse Problems in Elasticity and Viscoelasticity 599 Jean-Baptiste CASIMIR 12.1 Introduction 599 12.2 Overview of the continuous element method 601 12.3 Boundary conditions and their implications in the transfer matrix 608 12.4 Extensional vibration of straight beams (elementary theory) 609 12.5 The direct problem of beams submitted to bending vibration 612 12.6 Successive calculation steps to obtain a transfer matrix and simple displacement transfer function 620 12.7 Continuous element method adapted for solving an inverse problem in elasticity and viscoelasticity 622 12.8 Bibliography 624 12.9 Appendices 624 Appendix 12.A Wavenumbers deduced from Timoshenko's equation 624 List of Authors 629 Index 631