Reinhold Kienzler, George Herrmann
Mechanics in Material Space (eBook, PDF)
with Applications to Defect and Fracture Mechanics
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Reinhold Kienzler, George Herrmann
Mechanics in Material Space (eBook, PDF)
with Applications to Defect and Fracture Mechanics
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A novel and unified presentation of the elements of mechanics in material space or configurational mechanics, with applications to fracture and defect mechanics. The level is kept accessible for any engineer, scientist or graduate possessing some knowledge of calculus and partial differential equations, and working in the various areas where rational use of materials is essential.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 31.46MB
Andere Kunden interessierten sich auch für
- Issam DoghriMechanics of Deformable Solids (eBook, PDF)89,95 €
- Mechanics and Thermomechanics of Rubberlike Solids (eBook, PDF)73,95 €
- Dominique FrançoisMechanical Behaviour of Materials (eBook, PDF)113,95 €
- Nestor PerezFracture Mechanics (eBook, PDF)48,95 €
- Dominique FrançoisMechanical Behaviour of Materials (eBook, PDF)73,95 €
- J. R. BarberElasticity (eBook, PDF)81,95 €
- J. R. BarberElasticity (eBook, PDF)97,95 €
-
-
-
A novel and unified presentation of the elements of mechanics in material space or configurational mechanics, with applications to fracture and defect mechanics. The level is kept accessible for any engineer, scientist or graduate possessing some knowledge of calculus and partial differential equations, and working in the various areas where rational use of materials is essential.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 298
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642570100
- Artikelnr.: 53100974
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 298
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642570100
- Artikelnr.: 53100974
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Mathematical Preliminaries.- 1.1 General Remarks.- 1.2 What is a Conservation Law?.- 1.3 Trivial Conservation Laws.- 1.4 System with a Lagrangian; Noether's Method.- 1.5 System without a Lagrangian; Neutral-Action Method.- 1.6 Discussion.- 2 Linear Theory of Elasticity.- 2.1 General Remarks.- 2.2 Elements of Linear Elasticity.- 2.3 Conservation Laws of Linear Elastostatics.- 2.4 Alternative Derivations of Conservation Laws.- 3 Properties of the Eshelby Tensor.- 3.1 General Remarks 81.- 3.2 Physical Interpretation of the Components of the Eshelby Tensor.- 3.3 Invariants, Principal Values, Principal Directions and Extremal Values of the Eshelby Tensor.- 4 Linear Elasticity with Defects.- 4.1 General Remarks.- 4.2 Path-Independent Integrals and Energy-Release Rates.- 4.3 Example: Hole-Dislocation Interaction.- 4.4 Path-Independent Integrals of Fracture Mechanics.- 5 Inhomogeneous Elastostatics.- 5.1 General Remarks.- 5.2 Symmetry Transformations.- 5.3 The Homogeneous Case.- 5.4 The Inhomogeneous Case.- 5.5 Relation to Stress-Intensity Factors.- 5.6 Examples.- 6 Elastodynamics.- 6.1 General Remarks.- 6.2 Time t as an Additional Independent Variable.- 6.3 Convolution in Time.- 6.4 Domain-Independent Integrals.- 6.5 Energy-Release Rates.- 6.6 Wave Motion.- 7 Dissipative Systems.- 7.1 General Remarks.- 7.2 Diffusion Equation.- 7.3 Non-Linear Wave Equation.- 7.4 Viscoelasticity.- 8 Coupled Fields.- 8.1 General Remarks.- 8.2 Piezoelectricity.- 8.3 Thermoelasticity.- 8.4 Mechanics of a Porous Medium.- 9 Bars, Shafts and Beams.- 9.1 General Remarks.- 9.2 Elements of Strength-of-Materials.- 9.3 Balance and Conservation Laws for Bars and Shafts.- 9.4 Balance and Conservation Laws for Beams.- 9.5 Energy-Release Rates and Stress-Intensity Factors.- 9.6 Examples.- 10 Plates andShells.- 10.1 General Remarks.- 10.2 Plate Theories.- 10.3 Conservation Laws for Elastostatics of Mindlin Plates.- 10.4 Reduction to the Classical Theory.- 10.5 Conservation Laws for Shells.- Appendix A.- Conservation Laws for Inhomogeneous Bars under Arbitrary Axial Loading.- Appendix B.- B.1 Elastodynamics of Inhomogeneous Bernoulli-Euler Beams.- B.2 Reduction to Statics.- Appendix C.- C.1 Elastodynamics of Inhomogeneous Mindlin Plates.- C.2 Reduction to Statics.- References.- Symbol Index.- Author Index.
1 Mathematical Preliminaries.- 1.1 General Remarks.- 1.2 What is a Conservation Law?.- 1.3 Trivial Conservation Laws.- 1.4 System with a Lagrangian; Noether's Method.- 1.5 System without a Lagrangian; Neutral-Action Method.- 1.6 Discussion.- 2 Linear Theory of Elasticity.- 2.1 General Remarks.- 2.2 Elements of Linear Elasticity.- 2.3 Conservation Laws of Linear Elastostatics.- 2.4 Alternative Derivations of Conservation Laws.- 3 Properties of the Eshelby Tensor.- 3.1 General Remarks 81.- 3.2 Physical Interpretation of the Components of the Eshelby Tensor.- 3.3 Invariants, Principal Values, Principal Directions and Extremal Values of the Eshelby Tensor.- 4 Linear Elasticity with Defects.- 4.1 General Remarks.- 4.2 Path-Independent Integrals and Energy-Release Rates.- 4.3 Example: Hole-Dislocation Interaction.- 4.4 Path-Independent Integrals of Fracture Mechanics.- 5 Inhomogeneous Elastostatics.- 5.1 General Remarks.- 5.2 Symmetry Transformations.- 5.3 The Homogeneous Case.- 5.4 The Inhomogeneous Case.- 5.5 Relation to Stress-Intensity Factors.- 5.6 Examples.- 6 Elastodynamics.- 6.1 General Remarks.- 6.2 Time t as an Additional Independent Variable.- 6.3 Convolution in Time.- 6.4 Domain-Independent Integrals.- 6.5 Energy-Release Rates.- 6.6 Wave Motion.- 7 Dissipative Systems.- 7.1 General Remarks.- 7.2 Diffusion Equation.- 7.3 Non-Linear Wave Equation.- 7.4 Viscoelasticity.- 8 Coupled Fields.- 8.1 General Remarks.- 8.2 Piezoelectricity.- 8.3 Thermoelasticity.- 8.4 Mechanics of a Porous Medium.- 9 Bars, Shafts and Beams.- 9.1 General Remarks.- 9.2 Elements of Strength-of-Materials.- 9.3 Balance and Conservation Laws for Bars and Shafts.- 9.4 Balance and Conservation Laws for Beams.- 9.5 Energy-Release Rates and Stress-Intensity Factors.- 9.6 Examples.- 10 Plates andShells.- 10.1 General Remarks.- 10.2 Plate Theories.- 10.3 Conservation Laws for Elastostatics of Mindlin Plates.- 10.4 Reduction to the Classical Theory.- 10.5 Conservation Laws for Shells.- Appendix A.- Conservation Laws for Inhomogeneous Bars under Arbitrary Axial Loading.- Appendix B.- B.1 Elastodynamics of Inhomogeneous Bernoulli-Euler Beams.- B.2 Reduction to Statics.- Appendix C.- C.1 Elastodynamics of Inhomogeneous Mindlin Plates.- C.2 Reduction to Statics.- References.- Symbol Index.- Author Index.