Medical Image Synthesis (eBook, ePUB)
Methods and Clinical Applications
Redaktion: Yang, Xiaofeng
81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
81,95 €
Als Download kaufen
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
41 °P sammeln
Medical Image Synthesis (eBook, ePUB)
Methods and Clinical Applications
Redaktion: Yang, Xiaofeng
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Image synthesis across and within medical imaging modalities is an active area of research with broad applications in radiology and radiation oncology. This book covers the principles and methods of medical image synthesis, along with state-of-the-art research.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 50.67MB
Andere Kunden interessierten sich auch für
- Medical Image Synthesis (eBook, PDF)81,95 €
- 3D Ultrasound (eBook, ePUB)162,95 €
- Jay FlanzParticle Therapy Technology for Safe Treatment (eBook, ePUB)48,95 €
- Lia MorraArtificial Intelligence in Medical Imaging (eBook, ePUB)48,95 €
- 3D Printing in Radiation Oncology (eBook, ePUB)52,95 €
- Computer-aided Design and Diagnosis Methods for Biomedical Applications (eBook, ePUB)52,95 €
- Monte Carlo in Heavy Charged Particle Therapy (eBook, ePUB)52,95 €
-
-
-
Image synthesis across and within medical imaging modalities is an active area of research with broad applications in radiology and radiation oncology. This book covers the principles and methods of medical image synthesis, along with state-of-the-art research.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 318
- Erscheinungstermin: 6. Februar 2024
- Englisch
- ISBN-13: 9781000900798
- Artikelnr.: 68119341
- Verlag: Taylor & Francis
- Seitenzahl: 318
- Erscheinungstermin: 6. Februar 2024
- Englisch
- ISBN-13: 9781000900798
- Artikelnr.: 68119341
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Xiaofeng Yang received B.S., M.S., and Ph.D. degrees in biomedical engineering from Xi'an Jiaotong University, China. He finished his Ph.D. training and thesis at Emory University. He completed his postdoctoral and medical physics residency training at the Department of Radiation Oncology, Emory University School of Medicine, where he is currently an Associate Professor. He is also an adjunct faculty in the Medical Physics Department at Georgia Institute of Technology, Biomedical Informatics Department at Emory University, and the Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology. Dr. Yang is a board-certified medical physicist with expertise in image-guided radiotherapy, deep learning, and multimodality medical imaging, as well as medical image analysis. He is the Director of the Deep Biomedical Imaging Laboratory at Emory University. His lab focuses on developing novel AI-aided analytical and computational tools to enhance the role of quantitative imaging in cancer treatment and to improve the accuracy and precision of radiation therapy. His research has been funded by the NIH, DOD, and industrial funding agencies. He has published over 180 peer-reviewed journal papers, and has received many scientific awards from SPIE Medical Imaging, AAPM, ASTRO, and SNMMI in the past several years. Dr. Yang was the recipient of the John Laughlin Young Scientist Award from the American Association of Physicists in Medicine in 2020. He currently serves as Associate Editor for Medical Physics and Journal of Applied Clinical Medical Physics.
Part 1: Methods and Principles 1. Non
Deep
Learning
Based Medical Image Synthesis Methods 2. Deep Learning
Based Medical Image Synthesis Methods Part 2: Applications of Inter
Modality Image Synthesis 3. MRI
Based Image Synthesis 4. CBCT/CT
Based Image Synthesis 5. CT
Based DVF/Ventilation/Perfusion Imaging 6. Image
Based Dose Planning Prediction Part 3: Applications of Intra
Modality Image Synthesis 7. Medical Imaging Denoising 8. Attenuation Correction for Quantitative PET/MR Imaging 9. High
Resolution Medical Image Estimation 10. 2D
3D Transformation for 3D Volumetric Imaging 11. Multi
Modality MRI Synthesis 12. Multi
Energy CT Transformation and Virtual Monoenergetic Imaging 13. Metal Artifact Reduction Part 4: Other Applications of Medical Image Synthesis 14. Synthetic Image
Aided Segmentation 15. Synthetic Image
Aided Registration 16. CT Image Standardization Using Deep Image Synthesis Models Part 5: Clinic Usage of Medical Image Synthesis 17. Image
Guided Adaptive Radiotherapy Part 6: Perspectives 18. Validation and Evaluation Metrics 19. Limitation and Future Trends
Deep
Learning
Based Medical Image Synthesis Methods 2. Deep Learning
Based Medical Image Synthesis Methods Part 2: Applications of Inter
Modality Image Synthesis 3. MRI
Based Image Synthesis 4. CBCT/CT
Based Image Synthesis 5. CT
Based DVF/Ventilation/Perfusion Imaging 6. Image
Based Dose Planning Prediction Part 3: Applications of Intra
Modality Image Synthesis 7. Medical Imaging Denoising 8. Attenuation Correction for Quantitative PET/MR Imaging 9. High
Resolution Medical Image Estimation 10. 2D
3D Transformation for 3D Volumetric Imaging 11. Multi
Modality MRI Synthesis 12. Multi
Energy CT Transformation and Virtual Monoenergetic Imaging 13. Metal Artifact Reduction Part 4: Other Applications of Medical Image Synthesis 14. Synthetic Image
Aided Segmentation 15. Synthetic Image
Aided Registration 16. CT Image Standardization Using Deep Image Synthesis Models Part 5: Clinic Usage of Medical Image Synthesis 17. Image
Guided Adaptive Radiotherapy Part 6: Perspectives 18. Validation and Evaluation Metrics 19. Limitation and Future Trends
Part 1: Methods and Principles 1. Non
Deep
Learning
Based Medical Image Synthesis Methods 2. Deep Learning
Based Medical Image Synthesis Methods Part 2: Applications of Inter
Modality Image Synthesis 3. MRI
Based Image Synthesis 4. CBCT/CT
Based Image Synthesis 5. CT
Based DVF/Ventilation/Perfusion Imaging 6. Image
Based Dose Planning Prediction Part 3: Applications of Intra
Modality Image Synthesis 7. Medical Imaging Denoising 8. Attenuation Correction for Quantitative PET/MR Imaging 9. High
Resolution Medical Image Estimation 10. 2D
3D Transformation for 3D Volumetric Imaging 11. Multi
Modality MRI Synthesis 12. Multi
Energy CT Transformation and Virtual Monoenergetic Imaging 13. Metal Artifact Reduction Part 4: Other Applications of Medical Image Synthesis 14. Synthetic Image
Aided Segmentation 15. Synthetic Image
Aided Registration 16. CT Image Standardization Using Deep Image Synthesis Models Part 5: Clinic Usage of Medical Image Synthesis 17. Image
Guided Adaptive Radiotherapy Part 6: Perspectives 18. Validation and Evaluation Metrics 19. Limitation and Future Trends
Deep
Learning
Based Medical Image Synthesis Methods 2. Deep Learning
Based Medical Image Synthesis Methods Part 2: Applications of Inter
Modality Image Synthesis 3. MRI
Based Image Synthesis 4. CBCT/CT
Based Image Synthesis 5. CT
Based DVF/Ventilation/Perfusion Imaging 6. Image
Based Dose Planning Prediction Part 3: Applications of Intra
Modality Image Synthesis 7. Medical Imaging Denoising 8. Attenuation Correction for Quantitative PET/MR Imaging 9. High
Resolution Medical Image Estimation 10. 2D
3D Transformation for 3D Volumetric Imaging 11. Multi
Modality MRI Synthesis 12. Multi
Energy CT Transformation and Virtual Monoenergetic Imaging 13. Metal Artifact Reduction Part 4: Other Applications of Medical Image Synthesis 14. Synthetic Image
Aided Segmentation 15. Synthetic Image
Aided Registration 16. CT Image Standardization Using Deep Image Synthesis Models Part 5: Clinic Usage of Medical Image Synthesis 17. Image
Guided Adaptive Radiotherapy Part 6: Perspectives 18. Validation and Evaluation Metrics 19. Limitation and Future Trends