113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
Als Download kaufen
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
Jetzt verschenken
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
  • Format: PDF

This volume reviews the latest development in production, stabilization and structural analysis techniques of membrane proteins. It contains 14 chapters exploring topics including the advances in heterologous expression systems, stabilization tools and structural methods that contributed to the growing number of recombinant integral membrane protein structures solved in the past few years. Each chapter was written by internationally renowned scientists in the field of membrane proteins structural characterization.
Membrane proteins account for roughly 30 percent of all open reading frames
…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 15.78MB
Produktbeschreibung
This volume reviews the latest development in production, stabilization and structural analysis techniques of membrane proteins. It contains 14 chapters exploring topics including the advances in heterologous expression systems, stabilization tools and structural methods that contributed to the growing number of recombinant integral membrane protein structures solved in the past few years. Each chapter was written by internationally renowned scientists in the field of membrane proteins structural characterization.

Membrane proteins account for roughly 30 percent of all open reading frames in fully sequenced genomes. However, to date, atomic structures have so far been obtained for only 424 integral membrane proteins, with 100 new structures determined in the last two years. Only 10 percent of the unique integral membrane protein structures are derived from vertebrates. In general, integral membrane proteins are present in tissues at very low concentration, making production of recombinant proteins in heterologous systems suitable for large scale production a prerequisite for structural studies. Since the first atomic structures of recombinant mammalian integral membrane proteins published in 2005 (the calcium ATPase SERCA 1A and a voltage-dependent potatium channel), the structures of 37 recombinant mammalian integral membrane proteins, from which 20 belong to the G Protein Coupled Receptors family, have been solved.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Isabelle Mus-Veteau is a biochemist and biophysicist specialist in membrane protein characterization. She obtained her PhD in microbiology and cell biology at the University of Marseille in France. She has held a French National Centre for Scientific Research (CNRS) tenure position at the Institute of Molecular and Cellular Pharmacology (IPMC, Sophia Anti polis near Nice, France), where she supervises projects on the characterization of the Hedgehog receptor Patched. She was a member of the CNRS tenure position recruitment committee and is currently a member of the executive committees of the French Biophysical Society and of the Membrane Group Society. She organized two international summer schools on membrane protein production for structural analysis and two international congresses on membrane biophysics.