116,99 €
116,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
116,99 €
116,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
116,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
116,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

A detailed, practical review of state-of-the-art implementations of memory in IoT hardware As the Internet of Things (IoT) technology continues to evolve and become increasingly common across an array of specialized and consumer product applications, the demand on engineers to design new generations of flexible, low-cost, low power embedded memories into IoT hardware becomes ever greater. This book helps them meet that demand. Coauthored by a leading international expert and multiple patent holder, this book gets engineers up to speed on state-of-the-art implementations of memory in IoT…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 40.06MB
Produktbeschreibung
A detailed, practical review of state-of-the-art implementations of memory in IoT hardware As the Internet of Things (IoT) technology continues to evolve and become increasingly common across an array of specialized and consumer product applications, the demand on engineers to design new generations of flexible, low-cost, low power embedded memories into IoT hardware becomes ever greater. This book helps them meet that demand. Coauthored by a leading international expert and multiple patent holder, this book gets engineers up to speed on state-of-the-art implementations of memory in IoT hardware. Memories for the Intelligent Internet of Things covers an array of common and cutting-edge IoT embedded memory implementations. Ultra-low-power memories for IoT devices-including plastic and polymer circuitry for specialized applications, such as medical electronics-are described. The authors explore microcontrollers with embedded memory used for smart control of a multitude of Internet devices. They also consider neuromorphic memories made in Ferroelectric RAM (FeRAM), Resistance RAM (ReRAM), and Magnetic RAM (MRAM) technologies to implement artificial intelligence (AI) for the collection, processing, and presentation of large quantities of data generated by IoT hardware. Throughout the focus is on memory technologies which are complementary metal oxide semiconductor (CMOS) compatible, including embedded floating gate and charge trapping EEPROM/Flash along with FeRAMS, FeFETs, MRAMs and ReRAMs. * Provides a timely, highly practical look at state-of-the-art IoT memory implementations for an array of product applications * Synthesizes basic science with original analysis of memory technologies for Internet of Things (IoT) based on the authors' extensive experience in the field * Focuses on practical and timely applications throughout * Features numerous illustrations, tables, application requirements, and photographs * Considers memory related security issues in IoT devices Memories for the Intelligent Internet of Things is a valuable working resource for electrical engineers and engineering managers working in the electronics system and semiconductor industries. It is also an indispensable reference/text for graduate and advanced undergraduate students interested in the latest developments in integrated circuit devices and systems.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
BETTY PRINCE, PHD has over thirty years of experience in the semiconductor industry, having worked with Texas Instruments, N.V. Philips, Motorola, R.C.A., and Fairchild. She is currently CEO of Memory Strategies International, Leander, Texas, USA. She holds patents in the memory, processor and interface designs. DAVID PRINCE has worked with the memory reports written by Memory Strategies International for the last eighteen years. He holds degrees in Computer Science, Physics, and Astronomy from the University of Texas.