Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage addresses current challenges and covers design and fabrication approaches for nanomaterials based on metal organic frameworks for energy generation and storage technologies. The effect of synthetic diversity, functionalization, ways of improving conductivity and electronic transportation, tuning-in porosity to accommodate various types of electrolyte, and the criteria to achieve the appropriate pore size, shape and surface group of different metal sites and ligands are explored. The effect of integration of other elements, such as second metals or hetero-atomic doping in the system, to improve catalytic activity and durability, are also covered.
This is an important reference source for materials scientists, engineers and energy scientists looking to further their understanding on how metal organic framework-based nanomaterials are being used to create more efficient energy conversion and storage systems.
This is an important reference source for materials scientists, engineers and energy scientists looking to further their understanding on how metal organic framework-based nanomaterials are being used to create more efficient energy conversion and storage systems.
- Describes major metal organic framework-based nanomaterials applications for fuel cell, battery, supercapacitor and photovoltaic applications
- Provides information on the various nanomaterial types used for creating the most efficient energy conversion and storage systems
- Assesses the major challenges of using nanotechnology to manufacture energy conversion and storage systems on an industrial scale
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.