Methods and Applications of Autonomous Experimentation (eBook, PDF)
Redaktion: Noack, Marcus; Ushizima, Daniela
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Methods and Applications of Autonomous Experimentation (eBook, PDF)
Redaktion: Noack, Marcus; Ushizima, Daniela
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Illustrating theoretical foundations and incorporating practitioners' first-hand experience, book is a practical guide to successful Autonomous Experimentation.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 41.3MB
Andere Kunden interessierten sich auch für
- Methods and Applications of Autonomous Experimentation (eBook, ePUB)73,95 €
- Yang WangData Analytics for Smart Infrastructure (eBook, PDF)47,95 €
- Digital Humanities and Laboratories (eBook, PDF)42,95 €
- Esteban Tlelo-CuautleOptimization of Integer/Fractional Order Chaotic Systems by Metaheuristics and their Electronic Realization (eBook, PDF)54,95 €
- Pavel SumetsComputational Framework for the Finite Element Method in MATLAB® and Python (eBook, PDF)48,95 €
- Brian HarkinEvolving from Digital Transformation to Digital Acceleration Using The Galapagos Framework (eBook, PDF)34,95 €
- Combinatorial Scientific Computing (eBook, PDF)62,95 €
-
-
-
Illustrating theoretical foundations and incorporating practitioners' first-hand experience, book is a practical guide to successful Autonomous Experimentation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 444
- Erscheinungstermin: 14. Dezember 2023
- Englisch
- ISBN-13: 9781003821267
- Artikelnr.: 69457825
- Verlag: Taylor & Francis
- Seitenzahl: 444
- Erscheinungstermin: 14. Dezember 2023
- Englisch
- ISBN-13: 9781003821267
- Artikelnr.: 69457825
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Marcus M. Noack received his Ph.D. in applied mathematics from Oslo University, Norway. At Lawrence Berkeley National Laboratory, he is working on stochastic function approximation, optimization and uncertainty quantification, applied to Autonomous Experimentation. Daniela Ushizima, Ph.D. in physics from the University of Sao Paulo, Brazil after majoring in computer science, has been associated with Lawrence Berkeley National Laboratory since 2007, where she investigates machine learning algorithms applied to image processing. Her primary focus has been on developing computer vision software to automate scientific data analysis.
Preface
Contributors
Chapter 1 Autonomous Experimentation in Practice
Kevin G. Yager
Chapter 2 A Friendly Mathematical Perspective on Autonomous Experimentation
Marcus M. Noack
Chapter 3 A Perspective on Machine Learning for Autonomous Experimentation
Joshua Schrier and Alexander J. Norquist
Chapter 4 Gaussian Processes
Marcus M. Noack
Chapter 5 Uncertainty Quantification
Mark D. Risser and Marcus M. Noack
Chapter 6 Surrogate Model Guided Optimization
Juliane Mueller
Chapter 7 Artificial Neural Networks
Daniela Ushizima
Chapter 8 NSLS2
Philip M. Maffettone, Daniel B. Allan, Andi Barbour, Thomas A. Caswell,
Dmitri Gavrilov, Marcus D. Handwell, Thomas Morris, Daniel Olds, Maksim
Rakitin, Stuart I. Campbell and Bruce Ravel
Chapter 9 Reinforcement Learning
Yixuan Sun, Krishnan Raghavan and Prasanna Balaprakash
Chapter 10 Applications of Autonomous Methods to Synchrotron X-ray
Scattering and Diffraction Experiments
Masafumi Fukuto, Yu-Chen Wiegart, Marcus M. Noack and Kevin G. Yager
Chapter 11 Autonomous Infrared Absorption Spectroscopy
Hoi-Ying Holman, Steven Lee, Liang Chen, Petrus H. Zwart and Marcus M.
Noack
Chapter 12 Autonomous Hyperspectral Scanning Tunneling Spectroscopy
Antonio Rossi, Darian Smalley, Masahiro Ishigami, Eli Rotenberg, Alexander
Weber-Barigoni and John C. Thomas
Chapter 13 Autonomous Control and Analyses of Fabricated Ecosystems
Trent R. Northern, Peter Andeer, Marcus M. Noack, Ptrus H. Zwart and
Daniela Ushizima
Chapter 14 Autonomous Neutron Experiments
Martin Boehm, David E. Perryman, Alessio De Francesco, Luisa Scaccia,
Alessandro Cunsolo, Tobias Weber, Yannick LeGoc and Paolo Mutti
Chapter 15 Material Discovery in Poorly Explored High-Dimensional Targeted
Spaces
Suchismita Sarker and Apurva Mehta
Chapter 16 Autonomous Optical Microscopy for Exploring Nucleation and
Growth of DNA Crystals
Aaron N. Michelson
Chapter 17 Constratined Autonomous Modelin of Metal-Mineral Adsorption
Elliot Chang, Linda Beverly and Haruko Wainwright
Chapter 18 Physics-In-The-Loop
Aaron Gilad Kusne
Chapter 19 A Closed Loop of Diverse Disciplines
Marucs M. Noack and Kevin G. Yager
Chapter 20 Analysis of Raw Data
Marcus M. Noack and Kevin G. Yager
Chapter 21 Autonomous Intelligent Decision Making
Marcus M. Noack and Kevin G. Yager
Chapter 22 Data Infrastructure
Marcus M. Noack and Kevin G. Yager
Bibliography
Index
Contributors
Chapter 1 Autonomous Experimentation in Practice
Kevin G. Yager
Chapter 2 A Friendly Mathematical Perspective on Autonomous Experimentation
Marcus M. Noack
Chapter 3 A Perspective on Machine Learning for Autonomous Experimentation
Joshua Schrier and Alexander J. Norquist
Chapter 4 Gaussian Processes
Marcus M. Noack
Chapter 5 Uncertainty Quantification
Mark D. Risser and Marcus M. Noack
Chapter 6 Surrogate Model Guided Optimization
Juliane Mueller
Chapter 7 Artificial Neural Networks
Daniela Ushizima
Chapter 8 NSLS2
Philip M. Maffettone, Daniel B. Allan, Andi Barbour, Thomas A. Caswell,
Dmitri Gavrilov, Marcus D. Handwell, Thomas Morris, Daniel Olds, Maksim
Rakitin, Stuart I. Campbell and Bruce Ravel
Chapter 9 Reinforcement Learning
Yixuan Sun, Krishnan Raghavan and Prasanna Balaprakash
Chapter 10 Applications of Autonomous Methods to Synchrotron X-ray
Scattering and Diffraction Experiments
Masafumi Fukuto, Yu-Chen Wiegart, Marcus M. Noack and Kevin G. Yager
Chapter 11 Autonomous Infrared Absorption Spectroscopy
Hoi-Ying Holman, Steven Lee, Liang Chen, Petrus H. Zwart and Marcus M.
Noack
Chapter 12 Autonomous Hyperspectral Scanning Tunneling Spectroscopy
Antonio Rossi, Darian Smalley, Masahiro Ishigami, Eli Rotenberg, Alexander
Weber-Barigoni and John C. Thomas
Chapter 13 Autonomous Control and Analyses of Fabricated Ecosystems
Trent R. Northern, Peter Andeer, Marcus M. Noack, Ptrus H. Zwart and
Daniela Ushizima
Chapter 14 Autonomous Neutron Experiments
Martin Boehm, David E. Perryman, Alessio De Francesco, Luisa Scaccia,
Alessandro Cunsolo, Tobias Weber, Yannick LeGoc and Paolo Mutti
Chapter 15 Material Discovery in Poorly Explored High-Dimensional Targeted
Spaces
Suchismita Sarker and Apurva Mehta
Chapter 16 Autonomous Optical Microscopy for Exploring Nucleation and
Growth of DNA Crystals
Aaron N. Michelson
Chapter 17 Constratined Autonomous Modelin of Metal-Mineral Adsorption
Elliot Chang, Linda Beverly and Haruko Wainwright
Chapter 18 Physics-In-The-Loop
Aaron Gilad Kusne
Chapter 19 A Closed Loop of Diverse Disciplines
Marucs M. Noack and Kevin G. Yager
Chapter 20 Analysis of Raw Data
Marcus M. Noack and Kevin G. Yager
Chapter 21 Autonomous Intelligent Decision Making
Marcus M. Noack and Kevin G. Yager
Chapter 22 Data Infrastructure
Marcus M. Noack and Kevin G. Yager
Bibliography
Index
Preface
Contributors
Chapter 1 Autonomous Experimentation in Practice
Kevin G. Yager
Chapter 2 A Friendly Mathematical Perspective on Autonomous Experimentation
Marcus M. Noack
Chapter 3 A Perspective on Machine Learning for Autonomous Experimentation
Joshua Schrier and Alexander J. Norquist
Chapter 4 Gaussian Processes
Marcus M. Noack
Chapter 5 Uncertainty Quantification
Mark D. Risser and Marcus M. Noack
Chapter 6 Surrogate Model Guided Optimization
Juliane Mueller
Chapter 7 Artificial Neural Networks
Daniela Ushizima
Chapter 8 NSLS2
Philip M. Maffettone, Daniel B. Allan, Andi Barbour, Thomas A. Caswell,
Dmitri Gavrilov, Marcus D. Handwell, Thomas Morris, Daniel Olds, Maksim
Rakitin, Stuart I. Campbell and Bruce Ravel
Chapter 9 Reinforcement Learning
Yixuan Sun, Krishnan Raghavan and Prasanna Balaprakash
Chapter 10 Applications of Autonomous Methods to Synchrotron X-ray
Scattering and Diffraction Experiments
Masafumi Fukuto, Yu-Chen Wiegart, Marcus M. Noack and Kevin G. Yager
Chapter 11 Autonomous Infrared Absorption Spectroscopy
Hoi-Ying Holman, Steven Lee, Liang Chen, Petrus H. Zwart and Marcus M.
Noack
Chapter 12 Autonomous Hyperspectral Scanning Tunneling Spectroscopy
Antonio Rossi, Darian Smalley, Masahiro Ishigami, Eli Rotenberg, Alexander
Weber-Barigoni and John C. Thomas
Chapter 13 Autonomous Control and Analyses of Fabricated Ecosystems
Trent R. Northern, Peter Andeer, Marcus M. Noack, Ptrus H. Zwart and
Daniela Ushizima
Chapter 14 Autonomous Neutron Experiments
Martin Boehm, David E. Perryman, Alessio De Francesco, Luisa Scaccia,
Alessandro Cunsolo, Tobias Weber, Yannick LeGoc and Paolo Mutti
Chapter 15 Material Discovery in Poorly Explored High-Dimensional Targeted
Spaces
Suchismita Sarker and Apurva Mehta
Chapter 16 Autonomous Optical Microscopy for Exploring Nucleation and
Growth of DNA Crystals
Aaron N. Michelson
Chapter 17 Constratined Autonomous Modelin of Metal-Mineral Adsorption
Elliot Chang, Linda Beverly and Haruko Wainwright
Chapter 18 Physics-In-The-Loop
Aaron Gilad Kusne
Chapter 19 A Closed Loop of Diverse Disciplines
Marucs M. Noack and Kevin G. Yager
Chapter 20 Analysis of Raw Data
Marcus M. Noack and Kevin G. Yager
Chapter 21 Autonomous Intelligent Decision Making
Marcus M. Noack and Kevin G. Yager
Chapter 22 Data Infrastructure
Marcus M. Noack and Kevin G. Yager
Bibliography
Index
Contributors
Chapter 1 Autonomous Experimentation in Practice
Kevin G. Yager
Chapter 2 A Friendly Mathematical Perspective on Autonomous Experimentation
Marcus M. Noack
Chapter 3 A Perspective on Machine Learning for Autonomous Experimentation
Joshua Schrier and Alexander J. Norquist
Chapter 4 Gaussian Processes
Marcus M. Noack
Chapter 5 Uncertainty Quantification
Mark D. Risser and Marcus M. Noack
Chapter 6 Surrogate Model Guided Optimization
Juliane Mueller
Chapter 7 Artificial Neural Networks
Daniela Ushizima
Chapter 8 NSLS2
Philip M. Maffettone, Daniel B. Allan, Andi Barbour, Thomas A. Caswell,
Dmitri Gavrilov, Marcus D. Handwell, Thomas Morris, Daniel Olds, Maksim
Rakitin, Stuart I. Campbell and Bruce Ravel
Chapter 9 Reinforcement Learning
Yixuan Sun, Krishnan Raghavan and Prasanna Balaprakash
Chapter 10 Applications of Autonomous Methods to Synchrotron X-ray
Scattering and Diffraction Experiments
Masafumi Fukuto, Yu-Chen Wiegart, Marcus M. Noack and Kevin G. Yager
Chapter 11 Autonomous Infrared Absorption Spectroscopy
Hoi-Ying Holman, Steven Lee, Liang Chen, Petrus H. Zwart and Marcus M.
Noack
Chapter 12 Autonomous Hyperspectral Scanning Tunneling Spectroscopy
Antonio Rossi, Darian Smalley, Masahiro Ishigami, Eli Rotenberg, Alexander
Weber-Barigoni and John C. Thomas
Chapter 13 Autonomous Control and Analyses of Fabricated Ecosystems
Trent R. Northern, Peter Andeer, Marcus M. Noack, Ptrus H. Zwart and
Daniela Ushizima
Chapter 14 Autonomous Neutron Experiments
Martin Boehm, David E. Perryman, Alessio De Francesco, Luisa Scaccia,
Alessandro Cunsolo, Tobias Weber, Yannick LeGoc and Paolo Mutti
Chapter 15 Material Discovery in Poorly Explored High-Dimensional Targeted
Spaces
Suchismita Sarker and Apurva Mehta
Chapter 16 Autonomous Optical Microscopy for Exploring Nucleation and
Growth of DNA Crystals
Aaron N. Michelson
Chapter 17 Constratined Autonomous Modelin of Metal-Mineral Adsorption
Elliot Chang, Linda Beverly and Haruko Wainwright
Chapter 18 Physics-In-The-Loop
Aaron Gilad Kusne
Chapter 19 A Closed Loop of Diverse Disciplines
Marucs M. Noack and Kevin G. Yager
Chapter 20 Analysis of Raw Data
Marcus M. Noack and Kevin G. Yager
Chapter 21 Autonomous Intelligent Decision Making
Marcus M. Noack and Kevin G. Yager
Chapter 22 Data Infrastructure
Marcus M. Noack and Kevin G. Yager
Bibliography
Index