Methods in Brain Connectivity Inference through Multivariate Time Series Analysis (eBook, PDF)
Redaktion: Sameshima, Koichi; Baccala, Luiz Antonio
183,95 €
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
92 °P sammeln
183,95 €
Als Download kaufen
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
92 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
92 °P sammeln
Methods in Brain Connectivity Inference through Multivariate Time Series Analysis (eBook, PDF)
Redaktion: Sameshima, Koichi; Baccala, Luiz Antonio
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Incorporating multidisciplinary work in applied mathematics, statistics, and animal and human experiments at the forefront of the field, this volume addresses the use of time series data in brain connectivity interference studies. Contributors present codes and data examples to back up their methodological descriptions, exploring the details of
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 15.52MB
Andere Kunden interessierten sich auch für
- Modeling in the Neurosciences (eBook, PDF)63,95 €
- Motor Cortex in Voluntary Movements (eBook, PDF)63,95 €
- Handbook of Neuroprosthetic Methods (eBook, PDF)63,95 €
- Moo K. ChungStatistical and Computational Methods in Brain Image Analysis (eBook, PDF)47,95 €
- Munsif Ali JatoiBrain Source Localization Using EEG Signal Analysis (eBook, PDF)49,95 €
- Introduction to Non-Invasive EEG-Based Brain-Computer Interfaces for Assistive Technologies (eBook, PDF)47,95 €
- Computational Neuroscience (eBook, PDF)200,95 €
-
-
-
Incorporating multidisciplinary work in applied mathematics, statistics, and animal and human experiments at the forefront of the field, this volume addresses the use of time series data in brain connectivity interference studies. Contributors present codes and data examples to back up their methodological descriptions, exploring the details of
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 282
- Erscheinungstermin: 19. April 2016
- Englisch
- ISBN-13: 9781439845738
- Artikelnr.: 40613982
- Verlag: Taylor & Francis
- Seitenzahl: 282
- Erscheinungstermin: 19. April 2016
- Englisch
- ISBN-13: 9781439845738
- Artikelnr.: 40613982
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Koichi Sameshima studied electrical engineering and medicine at the University of São Paulo. He was introduced to cognitive neuroscience, brain electrophysiology, and time-series analysis during doctoral and postdoctoral training at the University of São Paulo and the University of California, San Francisco, respectively. His research themes revolve around neural plasticity, cognitive function, and information processing aspects of mammalian brain through behavioral, electrophysiological, and computational neuroscience protocols. He holds an associate professorship at the Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo. Luiz A. Baccalá majored in electrical engineering and physics at the University of São Paulo and then furthered his study on time-series evolution of bacterial resistance to antibiotics in a nosocomial environment, obtaining an MSc at the same university. He has since been involved in statistical signal processing and analysis and obtained his PhD from the University of Pennsylvania by proposing new statistical methods of communication channel identification and equalization. His current research interests focus on the investigation of multivariate time-series methods for neural connectivity inference and for problems of inverse source determination using arrays of sensors that include fMRI imaging and multielectrode EEG processing.
Brain Connectivity: An Overview. Fundamental Theory. Directed Transfer
Function: A Pioneering Concept in Connectivity Analysis. An Overview of
Vector Autoregressive Models. Partial Directed Coherence. Information
Partial Directed Coherence. Assessing Connectivity in the Presence of
Instantaneous Causality. Asymptotic PDC Properties. Extensions. Nonlinear
Parametric Granger Causality in Dynamical Networks. Time-Variant Estimation
of Connectivity and Kalman Filter. Applications. Connectivity Analysis
Based on Multielectrode EEG Inversion Methods with and without fMRI a
Priori Information. Methods for Connectivity Analysis in fMRI. Assessing
Causal Interactions among Cardiovascular Variability Series through a
Time-Domain Granger Causality Approach. Epilogue. Multivariate Time-Series
Brain Connectivity: A Sum-Up. Index.
Function: A Pioneering Concept in Connectivity Analysis. An Overview of
Vector Autoregressive Models. Partial Directed Coherence. Information
Partial Directed Coherence. Assessing Connectivity in the Presence of
Instantaneous Causality. Asymptotic PDC Properties. Extensions. Nonlinear
Parametric Granger Causality in Dynamical Networks. Time-Variant Estimation
of Connectivity and Kalman Filter. Applications. Connectivity Analysis
Based on Multielectrode EEG Inversion Methods with and without fMRI a
Priori Information. Methods for Connectivity Analysis in fMRI. Assessing
Causal Interactions among Cardiovascular Variability Series through a
Time-Domain Granger Causality Approach. Epilogue. Multivariate Time-Series
Brain Connectivity: A Sum-Up. Index.
Brain Connectivity: An Overview. Fundamental Theory. Directed Transfer
Function: A Pioneering Concept in Connectivity Analysis. An Overview of
Vector Autoregressive Models. Partial Directed Coherence. Information
Partial Directed Coherence. Assessing Connectivity in the Presence of
Instantaneous Causality. Asymptotic PDC Properties. Extensions. Nonlinear
Parametric Granger Causality in Dynamical Networks. Time-Variant Estimation
of Connectivity and Kalman Filter. Applications. Connectivity Analysis
Based on Multielectrode EEG Inversion Methods with and without fMRI a
Priori Information. Methods for Connectivity Analysis in fMRI. Assessing
Causal Interactions among Cardiovascular Variability Series through a
Time-Domain Granger Causality Approach. Epilogue. Multivariate Time-Series
Brain Connectivity: A Sum-Up. Index.
Function: A Pioneering Concept in Connectivity Analysis. An Overview of
Vector Autoregressive Models. Partial Directed Coherence. Information
Partial Directed Coherence. Assessing Connectivity in the Presence of
Instantaneous Causality. Asymptotic PDC Properties. Extensions. Nonlinear
Parametric Granger Causality in Dynamical Networks. Time-Variant Estimation
of Connectivity and Kalman Filter. Applications. Connectivity Analysis
Based on Multielectrode EEG Inversion Methods with and without fMRI a
Priori Information. Methods for Connectivity Analysis in fMRI. Assessing
Causal Interactions among Cardiovascular Variability Series through a
Time-Domain Granger Causality Approach. Epilogue. Multivariate Time-Series
Brain Connectivity: A Sum-Up. Index.