Research on microbial life exposed to permanent freeze or seasonal freeze-thaw cycles has led to astonishing findings about microbial versatility, adaptation, and diversity. Microorganisms thrive in cold habitats and new sequencing techniques have produced large amounts of genomic, metagenomic, and metatranscriptomic data that allow insights into the fascinating microbial ecology and physiology at low and subzero temperatures. Moreover, some of the frozen ecosystems such as permafrost constitute major global carbon and nitrogen storages, but can also act as sources of the greenhouse gases methane and nitrous oxide. In this book we summarize state of the art knowledge on whether environmental changes are met by a flexible microbial community retaining its function, or if the altered conditions also render the community in a state of altered properties that affect the Earth's element cycles and climate. This book brings together research on the cryosphere's microbiota including permafrost, glaciers, and sea ice in Arctic and Antarctic regions. Different spatial scales and levels of complexity are considered, spanning from ecosystem level to pure culture studies of model microbes in the laboratory. It aims to attract a wide range of parties with interest in the effect of climate change and/or low temperatures on microbial nutrient cycling and physiology.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.