Microcalorimetry of Macromolecules (eBook, ePUB)
The Physical Basis of Biological Structures
Alle Infos zum eBook verschenken
Microcalorimetry of Macromolecules (eBook, ePUB)
The Physical Basis of Biological Structures
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Examining the physical basis of the structure of macromolecules--proteins, nucleic acids, and their complexes--using calorimetric techniques Many scientists working in biology are unfamiliar with the basics of thermodynamics and its role in determining molecular structures. Yet measuring the heat of structural change a molecule undergoes under various conditions yields information on the energies involved and, thus, on the physical bases of the considered structures. Microcalorimetry of Macromolecules offers protein scientists unique access to this important information. Divided into thirteen…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 16.28MB
- Peter L. PrivalovMicrocalorimetry of Macromolecules (eBook, PDF)136,99 €
- Irena LevitanCholesterol Regulation of Ion Channels and Receptors (eBook, ePUB)120,99 €
- Protein Chaperones and Protection from Neurodegenerative Diseases (eBook, ePUB)137,99 €
- Virender K. SharmaOxidation of Amino Acids, Peptides, and Proteins (eBook, ePUB)132,99 €
- Rolando GuidelliBioelectrochemistry of Biomembranes and Biomimetic Membranes (eBook, ePUB)153,99 €
- Fluorescent Analogs of Biomolecular Building Blocks (eBook, ePUB)153,99 €
- Alexander V. RubanThe Photosynthetic Membrane (eBook, ePUB)50,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 404
- Erscheinungstermin: 29. Mai 2012
- Englisch
- ISBN-13: 9781118337493
- Artikelnr.: 37359285
- Verlag: John Wiley & Sons
- Seitenzahl: 404
- Erscheinungstermin: 29. Mai 2012
- Englisch
- ISBN-13: 9781118337493
- Artikelnr.: 37359285
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
-Helix and
-Helical Coiled-Coil 95 5.1 The
-Helix 95 5.1.1 Calorimetric Studies of
-Helix Unfolding-Refolding 95 5.1.2 Analysis of the Heat Capacity Function 99 5.2
-Helical Coiled-Coils 105 5.2.1 Two-Stranded Coiled-Coils 105 5.2.2 Three-Stranded Coiled-Coils 110 5.3
-Helical Coiled-Coil Proteins 113 5.3.1 Muscle Proteins 113 5.3.2 Myosin Rod 115 5.3.3 Paramyosin 116 5.3.4 Tropomyosin 117 5.3.5 Leucine Zipper 118 5.3.6 Discreteness of the Coiled-Coils 123 References 124 6 Polyproline-II Coiled-Coils 127 6.1 Collagens 127 6.1.1 Collagen Superhelix 127 6.1.2 Hydrogen Bonds in Collagen 129 6.1.3 Stability of Collagens 131 6.1.4 Role of Pyrrolidine Rings in Collagen Stabilization 133 6.2 Calorimetric Studies of Collagens 135 6.2.1 Enthalpy and Entropy of Collagen Melting 135 6.2.2 Correlation between Thermodynamic and Structural Characteristics of Collagens 138 6.2.3 Role of Water in Maintaining the Collagen Structure 140 6.3 Thermodynamics of Collagens 141 6.3.1 Cooperativity of Collagen Unfolding 141 6.3.2 Factors Responsible for Maintaining the Collagen Coiled-Coil 143 6.3.3 Flexibility of the Collagen Structure 145 6.3.4 Biological Aspect of the Collagen Stability Problem 148 References 150 7 Globular Proteins 153 7.1 Denaturation of Globular Proteins 153 7.1.1 Proteins at Extremal Conditions 153 7.1.2 The Main Problems of Protein Denaturation 154 7.2 Heat Denaturation of Proteins 155 7.2.1 DSC Studies of Protein Denaturation upon Heating 155 7.2.2 Reversibility of Heat Denaturation 155 7.2.3 Cooperativity of Denaturation 156 7.2.4 Heat Capacity of the Native and Denatured States 158 7.2.5 Functions Specifying Protein Stability 161 7.3 Cold Denaturation 167 7.3.1 Proteins at Low Temperatures 167 7.3.2 Experimental Observation of Cold Denaturation 168 7.4 pH-Induced Protein Denaturation 173 7.4.1 Isothermal pH Titration of Globular Proteins 173 7.5 Denaturant-Induced Protein Unfolding 175 7.5.1 Use of Denaturants for Estimating Protein Stability 175 7.5.2 Calorimetric Studies of Protein Unfolding by Denaturants 176 7.5.3 Urea and GuHCl Interactions with Protein 179 7.6 Unfolded State of Protein 182 7.6.1 Completeness of Protein Unfolding at Denaturation 182 7.6.2 Thermodynamic Functions Describing Protein States 186 References 190 8 Energetic Basis of Protein Structure 193 8.1 Hydration Effects 193 8.1.1 Proteins in an Aqueous Environment 193 8.1.2 Hydration of Protein Groups 194 8.1.3 Hydration of the Folded and Unfolded Protein 199 8.2 Protein in Vacuum 202 8.2.1 Heat Capacity of Globular Proteins 202 8.2.2 Enthalpy of Protein Unfolding in Vacuum 204 8.2.3 Entropy of Protein Unfolding in Vacuum 210 8.3 Back into the Water 214 8.3.1 Enthalpies of Protein Unfolding in Water 214 8.3.2 Hydrogen Bonds 216 8.3.3 Hydrophobic Effect 218 8.3.4 Balance of Forces Stabilizing and Destabilizing Protein Structure 219 References 223 9 Protein Folding 225 9.1 Macrostabilities and Microstabilities of Protein Structure 225 9.1.1 Macrostability of Proteins 225 9.1.2 Microstability of Proteins 226 9.1.3 Packing in Protein Interior 228 9.2 Protein Folding Technology 233 9.2.1 Intermediate States in Protein Folding 233 9.2.2 Molten Globule Concept 234 9.3 Formation of Protein Structure 241 9.3.1 Transient State in Protein Folding 241 9.3.2 Mechanism of Cooperation 242 9.3.3 Thermodynamic States of Proteins 243 References 245 10 Multidomain Proteins 249 10.1 Criterion of Cooperativity 249 10.1.1 Deviations from a Two-State Unfolding-Refolding 249 10.1.2 Papain 250 10.1.3 Pepsinogen 251 10.2 Proteins with Internal Homology 255 10.2.1 Evolution of Multidomain Proteins 255 10.2.2 Ovomucoid 255 10.2.3 Calcium-Binding Proteins 258 10.2.4 Plasminogen 263 10.2.5 Fibrinogen 264 10.2.6 Fibronectin 267 10.2.7 Discreteness in Protein Structure 268 References 271 11 Macromolecular Complexes 273 11.1 Entropy of Association Reactions 273 11.1.1 Thermodynamics of Molecular Association 273 11.1.2 Experimental Verifi cation of the Translational Entropy 275 11.2 Calorimetry of Association Entropy 277 11.2.1 SSI Dimer Dissociation 277 11.2.2 Dissociation of the Coiled-Coil 283 11.2.3 Entropy Cost of Association 285 11.3 Thermodynamics of Molecular Recognition 286 11.3.1 Calorimetry of Protein Complex Formation 286 11.3.2 Target Peptide Recognition by Calmodulin 287 11.3.3 Thermodynamic Analysis of Macromolecular Complexes 293 References 295 12 Protein-DNA Interaction 297 12.1 Problems 297 12.1.1 Two Approaches 297 12.1.2 Protein Binding to the DNA Grooves 299 12.2 Binding to the Major Groove of DNA 300 12.2.1 Homeodomains 300 12.2.2 Binding of the GCN4 bZIP to DNA 307 12.2.3 Heterodimeric bZIP Interactions with the Asymmetric DNA Site 313 12.2.4 IRF Transcription Factors 317 12.2.5 Binding of NF-
B to the PRDII Site 320 12.3 Binding to the Minor Groove of DNA 322 12.3.1 AT-Hooks 322 12.3.2 HMG Boxes 326 12.4 Comparative Analysis of Protein-DNA Complexes 331 12.4.1 Sequence-Specifi c versus Non-Sequence-Specifi c HMGs 331 12.4.2 Salt-Dependent versus Salt-Independent Components of Binding 336 12.4.3 Minor versus Major Groove Binding 339 12.5 Concluding Remarks 345 12.5.1 Assembling Multicomponent Protein-DNA Complex 345 12.5.2 CC Approach versus PB Theory 346 References 347 13 Nucleic Acids 353 13.1 DNA 353 13.1.1 Problems 353 13.1.2 Factors Affecting DNA Melting 354 13.2 Polynucleotides 357 13.2.1 Melting of Polynucleotides 357 13.2.2 Calorimetry of Poly(A)
Poly(U) 358 13.3 Short DNA Duplexes 361 13.3.1 Calorimetry of Short DNA Duplexes 361 13.3.2 Specifi city of the AT-rich DNA Duplexes 366 13.3.3 DNA Hydration Studied by Pressure Perturbation Calorimetry 372 13.3.4 The Cost of DNA Bending 375 13.4 RNA 376 13.4.1 Calorimetry of RNA 376 13.4.2 Calorimetric Studies of Transfer RNAs 378 References 383 Index 387
-Helix and
-Helical Coiled-Coil 95 5.1 The
-Helix 95 5.1.1 Calorimetric Studies of
-Helix Unfolding-Refolding 95 5.1.2 Analysis of the Heat Capacity Function 99 5.2
-Helical Coiled-Coils 105 5.2.1 Two-Stranded Coiled-Coils 105 5.2.2 Three-Stranded Coiled-Coils 110 5.3
-Helical Coiled-Coil Proteins 113 5.3.1 Muscle Proteins 113 5.3.2 Myosin Rod 115 5.3.3 Paramyosin 116 5.3.4 Tropomyosin 117 5.3.5 Leucine Zipper 118 5.3.6 Discreteness of the Coiled-Coils 123 References 124 6 Polyproline-II Coiled-Coils 127 6.1 Collagens 127 6.1.1 Collagen Superhelix 127 6.1.2 Hydrogen Bonds in Collagen 129 6.1.3 Stability of Collagens 131 6.1.4 Role of Pyrrolidine Rings in Collagen Stabilization 133 6.2 Calorimetric Studies of Collagens 135 6.2.1 Enthalpy and Entropy of Collagen Melting 135 6.2.2 Correlation between Thermodynamic and Structural Characteristics of Collagens 138 6.2.3 Role of Water in Maintaining the Collagen Structure 140 6.3 Thermodynamics of Collagens 141 6.3.1 Cooperativity of Collagen Unfolding 141 6.3.2 Factors Responsible for Maintaining the Collagen Coiled-Coil 143 6.3.3 Flexibility of the Collagen Structure 145 6.3.4 Biological Aspect of the Collagen Stability Problem 148 References 150 7 Globular Proteins 153 7.1 Denaturation of Globular Proteins 153 7.1.1 Proteins at Extremal Conditions 153 7.1.2 The Main Problems of Protein Denaturation 154 7.2 Heat Denaturation of Proteins 155 7.2.1 DSC Studies of Protein Denaturation upon Heating 155 7.2.2 Reversibility of Heat Denaturation 155 7.2.3 Cooperativity of Denaturation 156 7.2.4 Heat Capacity of the Native and Denatured States 158 7.2.5 Functions Specifying Protein Stability 161 7.3 Cold Denaturation 167 7.3.1 Proteins at Low Temperatures 167 7.3.2 Experimental Observation of Cold Denaturation 168 7.4 pH-Induced Protein Denaturation 173 7.4.1 Isothermal pH Titration of Globular Proteins 173 7.5 Denaturant-Induced Protein Unfolding 175 7.5.1 Use of Denaturants for Estimating Protein Stability 175 7.5.2 Calorimetric Studies of Protein Unfolding by Denaturants 176 7.5.3 Urea and GuHCl Interactions with Protein 179 7.6 Unfolded State of Protein 182 7.6.1 Completeness of Protein Unfolding at Denaturation 182 7.6.2 Thermodynamic Functions Describing Protein States 186 References 190 8 Energetic Basis of Protein Structure 193 8.1 Hydration Effects 193 8.1.1 Proteins in an Aqueous Environment 193 8.1.2 Hydration of Protein Groups 194 8.1.3 Hydration of the Folded and Unfolded Protein 199 8.2 Protein in Vacuum 202 8.2.1 Heat Capacity of Globular Proteins 202 8.2.2 Enthalpy of Protein Unfolding in Vacuum 204 8.2.3 Entropy of Protein Unfolding in Vacuum 210 8.3 Back into the Water 214 8.3.1 Enthalpies of Protein Unfolding in Water 214 8.3.2 Hydrogen Bonds 216 8.3.3 Hydrophobic Effect 218 8.3.4 Balance of Forces Stabilizing and Destabilizing Protein Structure 219 References 223 9 Protein Folding 225 9.1 Macrostabilities and Microstabilities of Protein Structure 225 9.1.1 Macrostability of Proteins 225 9.1.2 Microstability of Proteins 226 9.1.3 Packing in Protein Interior 228 9.2 Protein Folding Technology 233 9.2.1 Intermediate States in Protein Folding 233 9.2.2 Molten Globule Concept 234 9.3 Formation of Protein Structure 241 9.3.1 Transient State in Protein Folding 241 9.3.2 Mechanism of Cooperation 242 9.3.3 Thermodynamic States of Proteins 243 References 245 10 Multidomain Proteins 249 10.1 Criterion of Cooperativity 249 10.1.1 Deviations from a Two-State Unfolding-Refolding 249 10.1.2 Papain 250 10.1.3 Pepsinogen 251 10.2 Proteins with Internal Homology 255 10.2.1 Evolution of Multidomain Proteins 255 10.2.2 Ovomucoid 255 10.2.3 Calcium-Binding Proteins 258 10.2.4 Plasminogen 263 10.2.5 Fibrinogen 264 10.2.6 Fibronectin 267 10.2.7 Discreteness in Protein Structure 268 References 271 11 Macromolecular Complexes 273 11.1 Entropy of Association Reactions 273 11.1.1 Thermodynamics of Molecular Association 273 11.1.2 Experimental Verifi cation of the Translational Entropy 275 11.2 Calorimetry of Association Entropy 277 11.2.1 SSI Dimer Dissociation 277 11.2.2 Dissociation of the Coiled-Coil 283 11.2.3 Entropy Cost of Association 285 11.3 Thermodynamics of Molecular Recognition 286 11.3.1 Calorimetry of Protein Complex Formation 286 11.3.2 Target Peptide Recognition by Calmodulin 287 11.3.3 Thermodynamic Analysis of Macromolecular Complexes 293 References 295 12 Protein-DNA Interaction 297 12.1 Problems 297 12.1.1 Two Approaches 297 12.1.2 Protein Binding to the DNA Grooves 299 12.2 Binding to the Major Groove of DNA 300 12.2.1 Homeodomains 300 12.2.2 Binding of the GCN4 bZIP to DNA 307 12.2.3 Heterodimeric bZIP Interactions with the Asymmetric DNA Site 313 12.2.4 IRF Transcription Factors 317 12.2.5 Binding of NF-
B to the PRDII Site 320 12.3 Binding to the Minor Groove of DNA 322 12.3.1 AT-Hooks 322 12.3.2 HMG Boxes 326 12.4 Comparative Analysis of Protein-DNA Complexes 331 12.4.1 Sequence-Specifi c versus Non-Sequence-Specifi c HMGs 331 12.4.2 Salt-Dependent versus Salt-Independent Components of Binding 336 12.4.3 Minor versus Major Groove Binding 339 12.5 Concluding Remarks 345 12.5.1 Assembling Multicomponent Protein-DNA Complex 345 12.5.2 CC Approach versus PB Theory 346 References 347 13 Nucleic Acids 353 13.1 DNA 353 13.1.1 Problems 353 13.1.2 Factors Affecting DNA Melting 354 13.2 Polynucleotides 357 13.2.1 Melting of Polynucleotides 357 13.2.2 Calorimetry of Poly(A)
Poly(U) 358 13.3 Short DNA Duplexes 361 13.3.1 Calorimetry of Short DNA Duplexes 361 13.3.2 Specifi city of the AT-rich DNA Duplexes 366 13.3.3 DNA Hydration Studied by Pressure Perturbation Calorimetry 372 13.3.4 The Cost of DNA Bending 375 13.4 RNA 376 13.4.1 Calorimetry of RNA 376 13.4.2 Calorimetric Studies of Transfer RNAs 378 References 383 Index 387