23,03 €
Statt 32,90 €**
23,03 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
23,03 €
Statt 32,90 €**
23,03 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 32,90 €****
23,03 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 32,90 €****
23,03 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Ein wichtiges Modell zur Darstellung ökonomischer Zusammenhänge ist das lineare Regressionsmodell. Zur Beurteilung der Güte eines linear affinen Schätzers wird in der vorliegenden Arbeit der relative quadratische Fehler eingeführt. Es lässt sich ohne jegliche Resultate aus der Stochastik zeigen, dass ein linear-affiner Schätzer (Minimax-Schätzer) existiert, der eindeutig angegeben werden kann und die kleinste untere Schranke für den maximalen relativen quadratischen Fehler in der Klasse aller Schätzfunktionen besitzt. Die Güte einer Schätzung wird jedoch nicht nur von den Eigenschaften der…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 5.94MB
  • FamilySharing(5)
Produktbeschreibung
Ein wichtiges Modell zur Darstellung ökonomischer Zusammenhänge ist das lineare Regressionsmodell. Zur Beurteilung der Güte eines linear affinen Schätzers wird in der vorliegenden Arbeit der relative quadratische Fehler eingeführt. Es lässt sich ohne jegliche Resultate aus der Stochastik zeigen, dass ein linear-affiner Schätzer (Minimax-Schätzer) existiert, der eindeutig angegeben werden kann und die kleinste untere Schranke für den maximalen relativen quadratischen Fehler in der Klasse aller Schätzfunktionen besitzt. Die Güte einer Schätzung wird jedoch nicht nur von den Eigenschaften der Schätzfunktion bestimmt, sondern auch von der Wahl der Messpunkte. Ziel dieser Arbeit ist es, Ergebnisse der optimalen Versuchsplanung auf Minimax-Schätzer anzuwenden. Hierzu werden Algorithmen zur Ermittlung exakter sowie diskreter Versuchspläne betrachtet, welche diese Schätzer bezüglich des relativen quadratischen Fehlers weiter optimieren.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.