Michel Willem
Minimax Theorems (eBook, PDF)
105,95 €
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
53 °P sammeln
105,95 €
Als Download kaufen
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
53 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
53 °P sammeln
Michel Willem
Minimax Theorems (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 17.47MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Birkhäuser Boston
- Seitenzahl: 165
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461241461
- Artikelnr.: 44199326
- Verlag: Birkhäuser Boston
- Seitenzahl: 165
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461241461
- Artikelnr.: 44199326
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Mountain pass theorem.- 1.1 Differentiable functionals.- 1.2 Quantitative deformation lemma.- 1.3 Mountain pass theorem.- 1.4 Semilinear Dirichlet problem.- 1.5 Symmetry and compactness.- 1.6 Symmetric solitary waves.- 1.7 Subcritical Sobolev inequalities.- 1.8 Non symmetric solitary waves.- 1.9 Critical Sobolev inequality.- 1.10 Critical nonlinearities.- 2 Linking theorem.- 2.1 Quantitative deformation lemma.- 2.2 Ekeland variational principle.- 2.3 General minimax principle.- 2.4 Semilinear Dirichlet problem.- 2.5 Location theorem.- 2.6 Critical nonlinearities.- 3 Fountain theorem.- 3.1 Equivariant deformation.- 3.2 Fountain theorem.- 3.3 Semilinear Dirichlet problem.- 3.4 Multiple solitary waves.- 3.5 A dual theorem.- 3.6 Concave and convex nonlinearities.- 3.7 Concave and critical nonlinearities.- 4 Nehari manifold.- 4.1 Definition of Nehari manifold.- 4.2 Ground states.- 4.3 Properties of critical values.- 4.4 Nodal solutions.- 5 Relative category.- 5.1 Category.- 5.2 Relative category.- 5.3 Quantitative deformation lemma.- 5.4 Minimax theorem.- 5.5 Critical nonlinearities.- 6 Generalized linking theorem.- 6.1 Degree theory.- 6.2 Pseudogradient flow.- 6.3 Generalized linking theorem.- 6.4 Semilinear Schrödinger equation.- 7 Generalized Kadomtsev-Petviashvili equation.- 7.1 Definition of solitary waves.- 7.2 Functional setting.- 7.3 Existence of solitary waves.- 7.4 Variational identity.- 8 Representation of Palais-Smale sequences.- 8.1 Invariance by translations.- 8.2 Symmetric domains.- 8.3 Invariance by dilations.- 8.4 Symmetric domains.- Appendix A: Superposition operator.- Appendix B: Variational identities.- Appendix C: Symmetry of minimizers.- Appendix D: Topological degree.- Index of Notations.
1 Mountain pass theorem.- 1.1 Differentiable functionals.- 1.2 Quantitative deformation lemma.- 1.3 Mountain pass theorem.- 1.4 Semilinear Dirichlet problem.- 1.5 Symmetry and compactness.- 1.6 Symmetric solitary waves.- 1.7 Subcritical Sobolev inequalities.- 1.8 Non symmetric solitary waves.- 1.9 Critical Sobolev inequality.- 1.10 Critical nonlinearities.- 2 Linking theorem.- 2.1 Quantitative deformation lemma.- 2.2 Ekeland variational principle.- 2.3 General minimax principle.- 2.4 Semilinear Dirichlet problem.- 2.5 Location theorem.- 2.6 Critical nonlinearities.- 3 Fountain theorem.- 3.1 Equivariant deformation.- 3.2 Fountain theorem.- 3.3 Semilinear Dirichlet problem.- 3.4 Multiple solitary waves.- 3.5 A dual theorem.- 3.6 Concave and convex nonlinearities.- 3.7 Concave and critical nonlinearities.- 4 Nehari manifold.- 4.1 Definition of Nehari manifold.- 4.2 Ground states.- 4.3 Properties of critical values.- 4.4 Nodal solutions.- 5 Relative category.- 5.1 Category.- 5.2 Relative category.- 5.3 Quantitative deformation lemma.- 5.4 Minimax theorem.- 5.5 Critical nonlinearities.- 6 Generalized linking theorem.- 6.1 Degree theory.- 6.2 Pseudogradient flow.- 6.3 Generalized linking theorem.- 6.4 Semilinear Schrödinger equation.- 7 Generalized Kadomtsev-Petviashvili equation.- 7.1 Definition of solitary waves.- 7.2 Functional setting.- 7.3 Existence of solitary waves.- 7.4 Variational identity.- 8 Representation of Palais-Smale sequences.- 8.1 Invariance by translations.- 8.2 Symmetric domains.- 8.3 Invariance by dilations.- 8.4 Symmetric domains.- Appendix A: Superposition operator.- Appendix B: Variational identities.- Appendix C: Symmetry of minimizers.- Appendix D: Topological degree.- Index of Notations.