Mining Biomedical Text, Images and Visual Features for Information Retrieval provides the reader with a broad coverage of the concepts, themes, and instrumentalities of the important and evolving area of biomedical text, images, and visual features towards information retrieval. It aims to encourage an even wider adoption of IR methods for assisting in problem-solving and to stimulate research that may lead to additional innovations in this area of research.The book discusses topics such as internet of things for health informatics; data privacy; smart healthcare; medical image processing; 3D medical images; evolutionary computing; deep learning; medical ontology; linguistic indexing; lexical analysis; and domain specific semantic categories in biomedical applications.It is a valuable resource for researchers and graduate students who are interested to learn more about data mining techniques to improve their research work. - Describes many biomedical imaging techniques to detect diseases at the cellular level i.e., image segmentation, classification, or image indexing using a variety of computational intelligence and image processing approaches - Discusses how data mining techniques can be used for noise diminution and filtering MRI, EEG, MEG, fMRI, fNIRS, and PET Images - Presents text mining techniques used for clinical documents in the areas of medicine and Biomedical NLP Systems
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.