97,95 €
97,95 €
inkl. MwSt.
Sofort per Download lieferbar
49 °P sammeln
97,95 €
Als Download kaufen
97,95 €
inkl. MwSt.
Sofort per Download lieferbar
49 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
97,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
49 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 24.89MB
Andere Kunden interessierten sich auch für
- Daniele BoffiMixed Finite Element Methods and Applications (eBook, PDF)137,95 €
- Jean DeteixNumerical Methods for Mixed Finite Element Problems (eBook, PDF)40,95 €
- Gabriel N. GaticaA Simple Introduction to the Mixed Finite Element Method (eBook, PDF)57,95 €
- Pavel B. BochevLeast-Squares Finite Element Methods (eBook, PDF)97,95 €
- Jean Claude SabonnadiereFinite Element Methods in CAD (eBook, PDF)40,95 €
- V. ThomeeGalerkin Finite Element Methods for Parabolic Problems (eBook, PDF)40,95 €
- Vidar ThomeeGalerkin Finite Element Methods for Parabolic Problems (eBook, PDF)137,95 €
-
-
-
Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 350
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461231721
- Artikelnr.: 44063435
- Verlag: Springer New York
- Seitenzahl: 350
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461231721
- Artikelnr.: 44063435
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I: Variational Formulations and Finite Element Methods.- 1. Classical Methods.- 2. Model Problems and Elementary Properties of Some Functional Spaces.- 3. Duality Methods.- 4. Domain Decomposition Methods, Hybrid Methods.- 5. Augmented Variational Formulations.- 6. Transposition Methods.- 7. Bibliographical remarks.- II: Approximation of Saddle Point Problems.- 1. Existence and Uniqueness of Solutions.- 2. Approximation of the Problem.- 3. Numerical Properties of the Discrete Problem.- 4. Solution by Penalty Methods, Convergence of Regularized Problems.- 5. Iterative Solution Methods. Uzawa's Algorithm.- 6. Concluding Remarks.- III: Function Spaces and Finite Element Approximations.- 1. Properties of the spaces Hs(?) and H(div; ?).- 2. Finite Element Approximations of H1(?) and H2(?).- 3. Approximations of H (div; ?).- 4. Concluding Remarks.- IV: Various Examples.- 1. Nonstandard Methods for Dirichlet's Problem.- 2. Stokes Problem.- 3. Elasticity Problems.- 4. A Mixed Fourth-Order Problem.- 5. Dual Hybrid Methods for Plate Bending Problems.- V: Complements on Mixed Methods for Elliptic Problems.- 1. Numerical Solutions.- 2. A Brief Analysis of the Computational Effort.- 3. Error Analysis for the Multiplier.- 4. Error Estimates in Other Norms.- 5. Application to an Equation Arising from Semiconductor Theory.- 6. How Things Can Go Wrong.- 7. Augmented Formulations.- VI: Incompressible Materials and Flow Problems.- 1. Introduction.- 2. The Stokes Problem as a Mixed Problem.- 3. Examples of Elements for Incompressible Materials.- 4. Standard Techniques of Proof for the inf-sup Condition.- 5. Macroelement Techniques and Spurious Pressure Modes.- 6. An Alternative Technique of Proof and Generalized Taylor-Hood Element.- 7. Nearly Incompressible Elasticity, Reduced Integration Methods and Relation with Penalty Methods.- 8. Divergence-Free Basis, Discrete Stream Functions.- 9. Other Mixed and Hybrid Methods for Incompressible Flows.- VII: Other Applications.- 1. Mixed Methods for Linear Thin Plates.- 2. Mixed Methods for Linear Elasticity Problems.- 3. Moderately Thick Plates.- References.
I: Variational Formulations and Finite Element Methods.- 1. Classical Methods.- 2. Model Problems and Elementary Properties of Some Functional Spaces.- 3. Duality Methods.- 4. Domain Decomposition Methods, Hybrid Methods.- 5. Augmented Variational Formulations.- 6. Transposition Methods.- 7. Bibliographical remarks.- II: Approximation of Saddle Point Problems.- 1. Existence and Uniqueness of Solutions.- 2. Approximation of the Problem.- 3. Numerical Properties of the Discrete Problem.- 4. Solution by Penalty Methods, Convergence of Regularized Problems.- 5. Iterative Solution Methods. Uzawa's Algorithm.- 6. Concluding Remarks.- III: Function Spaces and Finite Element Approximations.- 1. Properties of the spaces Hs(?) and H(div; ?).- 2. Finite Element Approximations of H1(?) and H2(?).- 3. Approximations of H (div; ?).- 4. Concluding Remarks.- IV: Various Examples.- 1. Nonstandard Methods for Dirichlet's Problem.- 2. Stokes Problem.- 3. Elasticity Problems.- 4. A Mixed Fourth-Order Problem.- 5. Dual Hybrid Methods for Plate Bending Problems.- V: Complements on Mixed Methods for Elliptic Problems.- 1. Numerical Solutions.- 2. A Brief Analysis of the Computational Effort.- 3. Error Analysis for the Multiplier.- 4. Error Estimates in Other Norms.- 5. Application to an Equation Arising from Semiconductor Theory.- 6. How Things Can Go Wrong.- 7. Augmented Formulations.- VI: Incompressible Materials and Flow Problems.- 1. Introduction.- 2. The Stokes Problem as a Mixed Problem.- 3. Examples of Elements for Incompressible Materials.- 4. Standard Techniques of Proof for the inf-sup Condition.- 5. Macroelement Techniques and Spurious Pressure Modes.- 6. An Alternative Technique of Proof and Generalized Taylor-Hood Element.- 7. Nearly Incompressible Elasticity, Reduced Integration Methods and Relation with Penalty Methods.- 8. Divergence-Free Basis, Discrete Stream Functions.- 9. Other Mixed and Hybrid Methods for Incompressible Flows.- VII: Other Applications.- 1. Mixed Methods for Linear Thin Plates.- 2. Mixed Methods for Linear Elasticity Problems.- 3. Moderately Thick Plates.- References.