47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

This work addresses classification using mixture models broadly. Unlike traditional treatments of the subject that heavily focus on unsupervised approaches, this book gives attention to unsupervised, semi-supervised, and supervised classification paradigms. Case studies illustrate both non-Gaussian and Gaussian approaches to model selection.

Produktbeschreibung
This work addresses classification using mixture models broadly. Unlike traditional treatments of the subject that heavily focus on unsupervised approaches, this book gives attention to unsupervised, semi-supervised, and supervised classification paradigms. Case studies illustrate both non-Gaussian and Gaussian approaches to model selection.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.

Rezensionen
"This Monograph, "Mixture Model-Based Classification" is an excellent book, highly relevant to every statistician working with classification problems."
~International Society for Clinical Biostatistics

"This monograph is an extensive introduction of mixture models with applications in classification and clustering. . . The author did good work by organizing the materials in a very natural way as well as presenting methods and algorithms in great detail. Moreover, many case studies help the reader understand and appreciate the methodologies presented."
~Journal of the American Statistical Association

"I would recommend this book to anyone interested in learning about application of mixture models to classification problems."
~The International Biometric Society