71,95 €
inkl. MwSt.
Sofort per Download lieferbar
  • Format: PDF

Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such…mehr

Produktbeschreibung
Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc.
This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application.

Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foued Ben Amara is an assistant professor at the University of Toronto, Canada.
Autorenporträt
Zhizheng Wu received the B.S. and M.S. degrees in electrical and electronic engineering from Hunan University, China, in 1993 and 1995, respectively, the Ph.D. degree in electronic and information engineering from Shanghai Jiaotong University, China, in 1998, and the Ph.D.degree in mechanical engineering from the University of Toronto, Canada, in 2008. From 1999 to 2004, he was respectively with Innomedia Inc., Shanghai; Hongkou Information Committee of Shanghai Government; and Omron Dualtec Automotive Electronics Inc., Toronto. From 2004 to 2009, he was a Research Associate in the Department of Mechanical and Industrial Engineering, University of Toronto. Since January 2010, he has been an associate professor in the Department of Precision Mechanical Engineering, Shanghai University, China. His current research interests include nonlinear/adaptive/hybrid control systems, adaptive optics systems, optomechatronic systems, and robotics.
Azhar Iqbal received the B.E. degree in aeronautical engineering from the National University of Sciences and Technology, Pakistan, in 1993, and the M.A.Sc. degree in aerospace studies and the Ph.D. degree in mechanical engineering from the University of Toronto, Canada, in 2005 and 2009, respectively. He is currently a Research Associate in the Department of Mechanical and Industrial Engineering, University of Toronto. His research interests include adaptive optics, retinal imaging systems, mechatronic systems, robust control, microelectromechanical systems, and biomedical engineering. Dr. Iqbal was a recipient of the 2009 Koh Young Best Paper Award from the International Journal of Optomechatronics.
Foued Ben Amara received the B.S. degree in mechanical engineering from the University of Wisconsin, Madison, the M.S.E. degree in mechanical engineering, the M.S.E. degree in
electrical engineering, and the Ph.D. degree in mechanical engineering from the University of Michigan, Ann Arbor. Prior to joining the University of Toronto, as an Assistant Professor in the Department of Mechanical and Industrial Engineering, he was with the National Research Council Canada — Innovation Centre, and then with UB Video, Inc., Vancouver, BC. His
research interests include nonlinear and adaptive control of dynamic systems with applications in the areas of microsystems and biomedical engineering. Dr. Ben Amara was a recipient of the 2009 Koh Young Best Paper Award from the International Journal of Optomechatronics.