81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
41 °P sammeln
81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
41 °P sammeln
Als Download kaufen
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
41 °P sammeln
Jetzt verschenken
81,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
41 °P sammeln
  • Format: PDF

The book describes the clean coal technology of chemical looping combustion (CLC) for power generation with pure CO2 capture. The focus of the book is on the modeling and simulation of CLC. It includes fundamental concepts behind CLC and considers all categories of fluidized beds and reactors, including a variety of oxygen carriers. The book includes process simulations with Aspen Plus® software using coal, natural gas, and biomass and computational fluid dynamics (CFD) simulations using both the Eulerian and Lagrangian methods. It describes various drag models, turbulence models, and kinetics…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 11.32MB
Produktbeschreibung
The book describes the clean coal technology of chemical looping combustion (CLC) for power generation with pure CO2 capture. The focus of the book is on the modeling and simulation of CLC. It includes fundamental concepts behind CLC and considers all categories of fluidized beds and reactors, including a variety of oxygen carriers. The book includes process simulations with Aspen Plus® software using coal, natural gas, and biomass and computational fluid dynamics (CFD) simulations using both the Eulerian and Lagrangian methods. It describes various drag models, turbulence models, and kinetics models required for CFD simulations of CLC and covers single reactor, partial, and full-simulations, single/multi-stage as well as single-particle simulations, and CLC with reverse flow. A large number of examples for both process simulations using Aspen Plus and CFD simulations using a variety of fluidized beds/reactors employing both the two-fluid and Computational Fluid Dynamics / Discrete Element Method (CFD-DEM) model are provided.
Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion will be an invaluable reference for industry practitioners and researchers in academic and industrial R&D currently working on clean energy technologies and power generation with carbon capture.


  • Provides a solid overview of the fundamental concepts behind CLC and fluidized beds and reactors;
  • Describes drag, turbulence, and kinetics models;
  • Includes process simulations using Aspen Plus® and CFD simulations.



Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ramesh K. Agarwal, Ph.D., is the William Palm Professor of Engineering in the Department of Mechanical Engineering and Materials Science at Washington University in St. Louis. From 1994 to 2001, he was the Sam Bloomfield Distinguished Professor and Executive Director of the National Institute for Aviation Research at Wichita State University. From 1978 to 1994, he worked in various scientific/managerial positions at McDonnell Douglas Research Laboratories in St. Louis and became Program Director and McDonnell Douglas Fellow in 1990. He received his Ph.D. in Aeronautical Sciences from Stanford University in 1975, an M.S. in Aeronautical Engineering from the University of Minnesota in 1969, and a B.S. in Mechanical Engineering from the Indian Institute of Technology, Kharagpur, in 1968. Professor Agarwal has worked in various areas of computational science and engineering including computational fluid dynamics (CFD), computational acoustics, magneto-hydrodynamics and electromagnetics, computational control theory and robotics, and multidisciplinary design and optimization. The range of applications in CFD includes subsonic, transonic and hypersonic flows, rarefied and micro-flows, active flow control, turbulence modeling, bio-fluid dynamics, turbomachinery and pumps, wind energy, energy efficiency of buildings, carbon capture and sequestration, and chemical looping combustion. He is the author and co-author of over 600 publications and serves on the editorial board of more than 20 journals. He has given many plenary, keynote, and invited lectures at various national and international conferences in over 60 countries worldwide. Professor Agarwal continues to serve on many professional, government, and industrial advisory committees. He is a Fellow of 28 professional societies including the AIAA, ASME, IEEE, SAE, AAAS, APS, ASEE, and IOP. Professor Agarwal has received many prestigious honors and national/international awards from various professional societies and organizations for his research contributions, including the AIAA Reed Aeronautics Award, SAE Medal of Honor, ASME Honorary Membership, and an Honorary Fellowship from the Royal Aeronautical Society.

Yali Shao, Ph.D., is currently a lecturer in the Engineering Laboratory for Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy and Mechanical Engineering of Nanjing Normal University in Nanjing. She received her Ph.D. in 2020 from the Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment at Southeast University, Nanjing, under the guidance of Prof. Baosheng Jin. Dr. Shao has collaborated extensively with Professor Ramesh K. Agarwal in the area of chemical looping combustion over the last five years, which is continuing. She has co-authored many publications with Professor Agarwal for international journals.