215,99 €
215,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
215,99 €
215,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
215,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
215,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

The purpose of this book is to provide graduate students and practitioners with traditional methods and more recent results for model-based approaches in signal processing. Firstly, discrete-time linear models such as AR, MA and ARMA models, their properties and their limitations are introduced. In addition, sinusoidal models are addressed. Secondly, estimation approaches based on least squares methods and instrumental variable techniques are presented. Finally, the book deals with optimal filters, i.e. Wiener and Kalman filtering, and adaptive filters such as the RLS, the LMS and their variants.…mehr

Produktbeschreibung
The purpose of this book is to provide graduate students and practitioners with traditional methods and more recent results for model-based approaches in signal processing. Firstly, discrete-time linear models such as AR, MA and ARMA models, their properties and their limitations are introduced. In addition, sinusoidal models are addressed. Secondly, estimation approaches based on least squares methods and instrumental variable techniques are presented. Finally, the book deals with optimal filters, i.e. Wiener and Kalman filtering, and adaptive filters such as the RLS, the LMS and their variants.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Mohamed Najim is Professor in signal processing at the ENSEIRB and Université Bordeaux I (France), where he leads the Signal and Image Processing group. An IEEE Fellow, he has worked in adaptive control and in the field of 1D and n-D identification in signal and image processing.