This book offers a unique approach to integrated high-temperature process modelling, intended to serve as a design aid for new metal processing technologies. The second edition has been substantially expanded to include new content such as: a new algorithm and test results of 3D stereoscopic visualization; new programming procedures for modelling; the validation of computer simulation using experimental results; a multiscale model of grain growth; a conceptual methodology developing "high-temperature" CCT (continuous cooling transformation) diagrams, and many more examples validating the numerical simulations.
The models presented are applied in comprehensive tests in order to solve problems related to the high-temperature deformation of steel. The testing methods include both physical tests using specialist laboratory instruments, and advanced mathematical modelling: the Finite Element method (FE), Smoothed Particle Hydrodynamics method (SPH
)and Monte Carlo method (MC).This approach, which integrates the fields of physical and computer-based simulations, forms the basis for the described concept of integrated high-temperature process modelling, presented in detail in this book.
The models presented are applied in comprehensive tests in order to solve problems related to the high-temperature deformation of steel. The testing methods include both physical tests using specialist laboratory instruments, and advanced mathematical modelling: the Finite Element method (FE), Smoothed Particle Hydrodynamics method (SPH
)and Monte Carlo method (MC).This approach, which integrates the fields of physical and computer-based simulations, forms the basis for the described concept of integrated high-temperature process modelling, presented in detail in this book.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.