13,99 €
Statt 17,95 €**
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
13,99 €
Statt 17,95 €**
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 17,95 €****
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 17,95 €****
13,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Academic Paper from the year 2021 in the subject Physics - Quantum Physics, grade: 2.00, , language: English, abstract: In this paper, a diatomic molecule is modelled as a simple quantum harmonic oscillator. The conventional solution of the Time-Independent Schrödinger equation (TISE) yields the wave function as the product of a Gaussian and Hermite polynomials. It is argued that the limits set for the vanishing of the wave function in the conventional solution are inappropriate for the modelling of a diatomic molecule by such an oscillator; instead, we posit that the wave function vanishes at…mehr

Produktbeschreibung
Academic Paper from the year 2021 in the subject Physics - Quantum Physics, grade: 2.00, , language: English, abstract: In this paper, a diatomic molecule is modelled as a simple quantum harmonic oscillator. The conventional solution of the Time-Independent Schrödinger equation (TISE) yields the wave function as the product of a Gaussian and Hermite polynomials. It is argued that the limits set for the vanishing of the wave function in the conventional solution are inappropriate for the modelling of a diatomic molecule by such an oscillator; instead, we posit that the wave function vanishes at the limits of the excursions of the mass centres of the atoms from their equilibrium positions. It is shown that the energy eigenstates for the model developed here are given by: E = hv[ 1 + (n pi/4)^2], where the symbols have their usual connotation.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.