Georg Kreisel, Jean-Louis Krivine
Modelltheorie (eBook, PDF)
Eine Einführung in die mathematische Logik und Grundlagentheorie
Übersetzer: Jung, Joachim
-33%11
33,26 €
49,99 €**
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
17 °P sammeln
-33%11
33,26 €
49,99 €**
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
17 °P sammeln
Als Download kaufen
49,99 €****
-33%11
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
17 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
49,99 €****
-33%11
33,26 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
17 °P sammeln
Georg Kreisel, Jean-Louis Krivine
Modelltheorie (eBook, PDF)
Eine Einführung in die mathematische Logik und Grundlagentheorie
Übersetzer: Jung, Joachim
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 37.79MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 278
- Erscheinungstermin: 12. März 2013
- Deutsch
- ISBN-13: 9783642653025
- Artikelnr.: 53092419
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
0 - Vorbereitungen. Definitionsschemata.- 1 - Aussagenkalkül.- Aufgaben.- 2 - Prädikatenkalkül.- Aufgaben.- 3 - Prädikatenkalkül mit Gleichheit.- Aufgaben.- 4 - Quantorenelimination.- Dichte Ordnungen mit erstem und letztem Element.- Diskrete Ordnungen ohne erstes und letztes Element.- Gewisse kommutative Gruppen mit diskreter Totalordnung.- Algebraisch abgeschlossene Körper.- Reell abgeschlossene Körper.- Atomare Boolesche Ringe.- Aufgaben.- 5 - Prädikatenkalkül mit mehreren Objektsorten.- Prädikatenkalkül mit k Objektsorten und Gleichheit.- Sprachen mit k Objektsorten, Gleichheit und Funktionszeichen.- Die Theorie der endlichen Typen.- Aufgaben.- 6 - Maximale Modelle, Modelle unendlicher Formeln.- Reduktion einer Klasse von Formeln zweiter Stufe.- Unendliche Formeln, die endlichstellige Relationen definieren.- Abzählbare Sprachen: Abz&hlbare Mengen von unendlichen Formeln.- Aufgaben.- 7 - Definierbarkeit.- Aufgaben.- ANHANG I - Die Axiomatische Methode.- ANHANG II - Grundlagen der Mathematik.- Die formalistisch-positivistische Doktrin der mathematischen Präzision.- Die Doktrin formaler Präzision.- Grundlegende Unterscheidungen.- Beispiele informaler Präzision.- Mängel der formalistischen Präzisionsdoktrin.- Der pragmatische Wert der formalistischen Doktrin.- Pädagogisches zur Grundlagenforschung.- A - Mengentheoretisch-semantische Grundlagen.- Zusammenfassung.- 1. Wie analysiert man intuitive Mathematik mit diesen Grundbegriffen.- Endliche Mengen: Verallgemeinerte Realisierungen. Der intuitive Ordinalzahlbegriff.- 2. Wie findet man Axiome für die mengentheoretischen Grundbegriffe?.- 3. Wie kann man die bisherige Theorie A*[A] verstärken?.- 4. Historische Bemerkungen. Weitere Informationen über den intuitiven Gültigkeitsbegriff.- B -Kombinatorische Grundlagen.- Zusammenfassung.- 0 - Kombinatorisches Schließen.- (a) Kombinatorische Sprachen und Realisierungen.- (b) Kombinatorische Realisierung einer Formel: Kombinatorische Giiltigkeit.- (c) Mengentheoretische Übersetzungen kombinatorischer Identitäten; nicht-kombinatorische Beweise dieser Übersetzungen.- 1 - Wie analysiert man intuitive Mathematik mit den kombinatorischen Grundbegriffen?.- (a) Repräsentation (Beschreibung) des mathe matischen Schließens mittels formaler Systeme.- (b) Reduktion intuitiver Prinzipien auf kombinatorische Prinzipien (Hilbertsches Widerspruchsfreiheitsproblem.- (c) Positive Lösungen zum Hilbertschen Problem.- 2 - Wie findet man Axiome für die kombinatorischen Grundbegriffe?.- (a).- (c) Ein formales System.- Konsequenzen für das Hilbertsche Programm.- 3 - Ausbau der Theorie.- 4 - Kritische Zusammenfassung.- (a) Vergleich zwischen mengentheoretischen und kombinatorischen Grundlagen.- (b) Doktrinäre Grundlagen.- (c) Grober Formalismus.- 5 - Aktuelle Forschungsaufgaben.- C - Vergleich zwischen der semantischen und syntaktischen (kombinatorischen) Einführung in die mathematische Logik.
0 - Vorbereitungen. Definitionsschemata.- 1 - Aussagenkalkül.- Aufgaben.- 2 - Prädikatenkalkül.- Aufgaben.- 3 - Prädikatenkalkül mit Gleichheit.- Aufgaben.- 4 - Quantorenelimination.- Dichte Ordnungen mit erstem und letztem Element.- Diskrete Ordnungen ohne erstes und letztes Element.- Gewisse kommutative Gruppen mit diskreter Totalordnung.- Algebraisch abgeschlossene Körper.- Reell abgeschlossene Körper.- Atomare Boolesche Ringe.- Aufgaben.- 5 - Prädikatenkalkül mit mehreren Objektsorten.- Prädikatenkalkül mit k Objektsorten und Gleichheit.- Sprachen mit k Objektsorten, Gleichheit und Funktionszeichen.- Die Theorie der endlichen Typen.- Aufgaben.- 6 - Maximale Modelle, Modelle unendlicher Formeln.- Reduktion einer Klasse von Formeln zweiter Stufe.- Unendliche Formeln, die endlichstellige Relationen definieren.- Abzählbare Sprachen: Abz&hlbare Mengen von unendlichen Formeln.- Aufgaben.- 7 - Definierbarkeit.- Aufgaben.- ANHANG I - Die Axiomatische Methode.- ANHANG II - Grundlagen der Mathematik.- Die formalistisch-positivistische Doktrin der mathematischen Präzision.- Die Doktrin formaler Präzision.- Grundlegende Unterscheidungen.- Beispiele informaler Präzision.- Mängel der formalistischen Präzisionsdoktrin.- Der pragmatische Wert der formalistischen Doktrin.- Pädagogisches zur Grundlagenforschung.- A - Mengentheoretisch-semantische Grundlagen.- Zusammenfassung.- 1. Wie analysiert man intuitive Mathematik mit diesen Grundbegriffen.- Endliche Mengen: Verallgemeinerte Realisierungen. Der intuitive Ordinalzahlbegriff.- 2. Wie findet man Axiome für die mengentheoretischen Grundbegriffe?.- 3. Wie kann man die bisherige Theorie A*[A] verstärken?.- 4. Historische Bemerkungen. Weitere Informationen über den intuitiven Gültigkeitsbegriff.- B -Kombinatorische Grundlagen.- Zusammenfassung.- 0 - Kombinatorisches Schließen.- (a) Kombinatorische Sprachen und Realisierungen.- (b) Kombinatorische Realisierung einer Formel: Kombinatorische Giiltigkeit.- (c) Mengentheoretische Übersetzungen kombinatorischer Identitäten; nicht-kombinatorische Beweise dieser Übersetzungen.- 1 - Wie analysiert man intuitive Mathematik mit den kombinatorischen Grundbegriffen?.- (a) Repräsentation (Beschreibung) des mathe matischen Schließens mittels formaler Systeme.- (b) Reduktion intuitiver Prinzipien auf kombinatorische Prinzipien (Hilbertsches Widerspruchsfreiheitsproblem.- (c) Positive Lösungen zum Hilbertschen Problem.- 2 - Wie findet man Axiome für die kombinatorischen Grundbegriffe?.- (a).- (c) Ein formales System.- Konsequenzen für das Hilbertsche Programm.- 3 - Ausbau der Theorie.- 4 - Kritische Zusammenfassung.- (a) Vergleich zwischen mengentheoretischen und kombinatorischen Grundlagen.- (b) Doktrinäre Grundlagen.- (c) Grober Formalismus.- 5 - Aktuelle Forschungsaufgaben.- C - Vergleich zwischen der semantischen und syntaktischen (kombinatorischen) Einführung in die mathematische Logik.