Modern Trends in Structural and Solid Mechanics 3 (eBook, PDF)
Non-deterministic Mechanics
Redaktion: Challamel, Noel; Takewaki, Izuru; Kaplunov, Julius
Alle Infos zum eBook verschenken
Modern Trends in Structural and Solid Mechanics 3 (eBook, PDF)
Non-deterministic Mechanics
Redaktion: Challamel, Noel; Takewaki, Izuru; Kaplunov, Julius
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book comprised of three separate volumes presents the recent developments and research discoveries in structural and solid mechanics; it is dedicated to Professor Isaac Elishakoff. This third volume is devoted to non-deterministic mechanics. Modern Trends in Structural and Solid Mechanics 3 has broad scope, covering topics such: design optimization under uncertainty, interval field approaches, convex analysis, quantum inspired topology optimization and stochastic dynamics. The book is illustrated by many applications in the field of aerospace engineering, mechanical engineering, civil…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 15.77MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: For Dummies
- Seitenzahl: 304
- Erscheinungstermin: 2. Juni 2021
- Englisch
- ISBN-13: 9781119831822
- Artikelnr.: 62078226
- Verlag: For Dummies
- Seitenzahl: 304
- Erscheinungstermin: 2. Juni 2021
- Englisch
- ISBN-13: 9781119831822
- Artikelnr.: 62078226
Noël CHALLAMEL, Julius KAPLUNOV and Izuru TAKEWAKI
Chapter 1. Optimization in Mitochondrial Energetic Pathways 1
Haym BENAROYA
1.1. Optimization in neural and cell biology 1
1.2. Mitochondria 3
1.3. General morphology; fission and fusion 5
1.4. Mechanical aspects 9
1.5. Mitochondrial motility 13
1.6. Cristae, ultrastructure and supercomplexes 14
1.7. Mitochondrial diseases and neurodegenerative disorders 15
1.8. Modeling 16
1.9. Concluding summary 17
1.10. Acknowledgments 18
1.11. Appendix 18
1.12. References 19
Chapter 2. The Concept of Local and Non-Local Randomness for Some
Mechanical Problems 23
Giovanni FALSONE and Rossella LAUDANI
2.1. Introduction 23
2.2. Preliminary concepts 24
2.2.1. Statically determinate stochastic beams 24
2.2.2. Statically indeterminate stochastic beams 26
2.3. Local and non-local randomness 29
2.3.1. Statically determinate stochastic beams 31
2.3.2. Statically indeterminate stochastic beams 32
2.3.3. Comments on the results 36
2.4. Conclusion 36
2.5. References 37
Chapter 3. On the Applicability of First-Order Approximations for Design
Optimization under Uncertainty 39
Benedikt KRIEGESMANN
3.1. Introduction 39
3.2. Summary of first- and second-order Taylor series approximations for
uncertainty quantification 41
3.2.1. Approximations of stochastic moments 42
3.2.2. Probabilistic lower bound approximation 43
3.2.3. Convex anti-optimization 44
3.2.4. Correlation of probabilistic approaches and convex anti-optimization
45
3.3. Design optimization under uncertainty 46
3.3.1. Robust design optimization 46
3.3.2. Reliability-based design optimization 47
3.3.3. Optimization with convex anti-optimization 48
3.4. Numerical examples 48
3.4.1. Imperfect von Mises truss analysis 48
3.4.2. Three-bar truss optimization 50
3.4.3. Topology optimization 52
3.5. Conclusion and outlook 56
3.6. References 57
Chapter 4. Understanding Uncertainty 61
Maurice LEMAIRE
4.1. Introduction 61
4.2. Uncertainty and uncertainties 61
4.3. Design and uncertainty 63
4.3.1. Decision modules 63
4.3.2. Designing in uncertain 66
4.4. Knowledge entity 67
4.4.1. Structure of a knowledge entity 67
4.5. Robust and reliable engineering 70
4.5.1. Definitions 70
4.5.2. Robustness 71
4.5.3. Reliability 72
4.5.4. Optimization 72
4.5.5. Reliable and robust optimization 73
4.6. Conclusion 74
4.7. References 75
Chapter 5. New Approach to the Reliability Verification of Aerospace
Structures 77
Giora MAYMON
5.1. Introduction 77
5.2. Factor of safety and probability of failure 78
5.3. Reliability verification of aerospace structural systems 84
5.3.1. Reliability demonstration is integrated into the design process 86
5.3.2. Analysis of failure mechanism and failure modes 87
5.3.3. Modeling the structural behavior, verifying the model by tests 87
5.3.4. Design of structural development tests to surface failure modes 88
5.3.5. Design of development tests to find unpredicted failure modes 88
5.3.6. "Cleaning" failure mechanism and failure modes 88
5.3.7. Determination of required safety and confidence in models 89
5.3.8. Determination of the reliability by "orders of magnitude" 89
5.4. Summary 92
5.5. References 93
Chapter 6. A Review of Interval Field Approaches for Uncertainty
Quantification in Numerical Models 95
Matthias FAES, Maurice IMHOLZ, Dirk VANDEPITTE and David MOENS
6.1. Introduction 95
6.2. Interval finite element analysis 97
6.3. Convex-set analysis 99
6.4. Interval field analysis 100
6.4.1. Explicit interval field formulation 101
6.4.2. Interval fields based on KL expansion 103
6.4.3. Interval fields based on convex descriptors 105
6.5. Conclusion 105
6.6. Acknowledgments 106
6.7. References 106
Chapter 7. Convex Polytopic Models for the Static Response of Structures
with Uncertain-but-bounded Parameters 111
Zhiping QIU and Nan JIANG
7.1. Introduction 111
7.2. Problem statements 114
7.3. Analysis and solution of the convex polytopic model for the static
response of structures 116
7.4. Vertex solution theorem of the convex polytopic model for the static
response of structures 119
7.5. Review of the vertex solution theorem of the interval model for the
static response of structures 122
7.6. Numerical examples 127
7.6.1. Two-step bar 127
7.6.2. Ten-bar truss 130
7.6.3. Plane frame 135
7.7. Conclusion 141
7.8. Acknowledgments 141
7.9. References 141
Chapter 8. On the Interval Frequency Response of Cracked Beams with
Uncertain Damage 145
Roberta SANTORO
8.1. Introduction 146
8.2. Crack modeling for damaged beams 148
8.2.1. Finite element crack model 148
8.2.2. Continuous crack model 149
8.3. Statement of the problem 150
8.3.1. Interval model for the uncertain crack depth 151
8.3.2. Governing equations of damaged beams 152
8.3.3. Finite element model versus continuous model 154
8.4. Interval frequency response of multi-cracked beams 162
8.4.1. Interval deflection function in the FE model 162
8.4.2. Interval deflection function in the continuous model 165
8.5. Numerical applications 167
8.6. Concluding remarks 173
8.7. Acknowledgments 173
8.8. References 173
Chapter 9. Quantum-Inspired Topology Optimization 177
Xiaojun WANG, Bowen NI and Lei WANG
9.1. Introduction 177
9.2. General statements 180
9.2.1. Density-based continuum structural topology optimization formulation
180
9.2.2. Characteristics of quantum computing 181
9.3. Topology optimization design model based on quantum-inspired
evolutionary algorithms 183
9.3.1. Classic procedure of topology optimization based on the SIMP method
and optimality criteria 183
9.3.2. The fundamental theory of a quantum-inspired evolutionary algorithm
- DCQGA 186
9.3.3. Implementation of the integral topology optimization framework 189
9.4. A quantum annealing operator to accelerate the calculation and jump
out of local extremum 191
9.5. Numerical examples 195
9.5.1. Example of a short cantilever 195
9.5.2. Example of a wing rib 196
9.6. Conclusion 198
9.7. Acknowledgments 198
9.8. References 199
Chapter 10. Time Delay Vibrations and Almost Sure Stability in Vehicle
Dynamics 203
Walter V. WEDIG
10.1. Introduction to road vehicle dynamics 203
10.2. Delay resonances of half-car models on road 205
10.3. Extensions to multi-body vehicles on a random road 209
10.4. Non-stationary road excitations applying sinusoidal models 212
10.5. Resonance reduction or induction by means of colored noise 215
10.6. Lyapunov exponents and rotation numbers in vehicle dynamics 218
10.7. Concluding remarks and main new results 221
10.8. References 222
Chapter 11. Order Statistics Approach to Structural Optimization
Considering Robustness and Confidence of Responses 225
Makoto YAMAKAWA and Makoto OHSAKI
11.1. Introduction 225
11.2. Overview of order statistics 226
11.2.1. Definition of order statistics 226
11.2.2. Tolerance intervals and confidence intervals of quantiles 227
11.3. Robust design 229
11.3.1. Overview of the robust design problem 229
11.3.2. Worst-case-based method 230
11.3.3. Order statistics-based method 230
11.4. Numerical examples 231
11.4.1. Design response spectrum 231
11.4.2. Optimization of the building frame considering seismic responses
232
11.4.3. Multi-objective optimization considering robustness 236
11.5. Conclusion 239
11.6. References 240
List of Authors 243
Index 245
Summaries of Volumes 1 and 2 249
Noël CHALLAMEL, Julius KAPLUNOV and Izuru TAKEWAKI
Chapter 1. Optimization in Mitochondrial Energetic Pathways 1
Haym BENAROYA
1.1. Optimization in neural and cell biology 1
1.2. Mitochondria 3
1.3. General morphology; fission and fusion 5
1.4. Mechanical aspects 9
1.5. Mitochondrial motility 13
1.6. Cristae, ultrastructure and supercomplexes 14
1.7. Mitochondrial diseases and neurodegenerative disorders 15
1.8. Modeling 16
1.9. Concluding summary 17
1.10. Acknowledgments 18
1.11. Appendix 18
1.12. References 19
Chapter 2. The Concept of Local and Non-Local Randomness for Some
Mechanical Problems 23
Giovanni FALSONE and Rossella LAUDANI
2.1. Introduction 23
2.2. Preliminary concepts 24
2.2.1. Statically determinate stochastic beams 24
2.2.2. Statically indeterminate stochastic beams 26
2.3. Local and non-local randomness 29
2.3.1. Statically determinate stochastic beams 31
2.3.2. Statically indeterminate stochastic beams 32
2.3.3. Comments on the results 36
2.4. Conclusion 36
2.5. References 37
Chapter 3. On the Applicability of First-Order Approximations for Design
Optimization under Uncertainty 39
Benedikt KRIEGESMANN
3.1. Introduction 39
3.2. Summary of first- and second-order Taylor series approximations for
uncertainty quantification 41
3.2.1. Approximations of stochastic moments 42
3.2.2. Probabilistic lower bound approximation 43
3.2.3. Convex anti-optimization 44
3.2.4. Correlation of probabilistic approaches and convex anti-optimization
45
3.3. Design optimization under uncertainty 46
3.3.1. Robust design optimization 46
3.3.2. Reliability-based design optimization 47
3.3.3. Optimization with convex anti-optimization 48
3.4. Numerical examples 48
3.4.1. Imperfect von Mises truss analysis 48
3.4.2. Three-bar truss optimization 50
3.4.3. Topology optimization 52
3.5. Conclusion and outlook 56
3.6. References 57
Chapter 4. Understanding Uncertainty 61
Maurice LEMAIRE
4.1. Introduction 61
4.2. Uncertainty and uncertainties 61
4.3. Design and uncertainty 63
4.3.1. Decision modules 63
4.3.2. Designing in uncertain 66
4.4. Knowledge entity 67
4.4.1. Structure of a knowledge entity 67
4.5. Robust and reliable engineering 70
4.5.1. Definitions 70
4.5.2. Robustness 71
4.5.3. Reliability 72
4.5.4. Optimization 72
4.5.5. Reliable and robust optimization 73
4.6. Conclusion 74
4.7. References 75
Chapter 5. New Approach to the Reliability Verification of Aerospace
Structures 77
Giora MAYMON
5.1. Introduction 77
5.2. Factor of safety and probability of failure 78
5.3. Reliability verification of aerospace structural systems 84
5.3.1. Reliability demonstration is integrated into the design process 86
5.3.2. Analysis of failure mechanism and failure modes 87
5.3.3. Modeling the structural behavior, verifying the model by tests 87
5.3.4. Design of structural development tests to surface failure modes 88
5.3.5. Design of development tests to find unpredicted failure modes 88
5.3.6. "Cleaning" failure mechanism and failure modes 88
5.3.7. Determination of required safety and confidence in models 89
5.3.8. Determination of the reliability by "orders of magnitude" 89
5.4. Summary 92
5.5. References 93
Chapter 6. A Review of Interval Field Approaches for Uncertainty
Quantification in Numerical Models 95
Matthias FAES, Maurice IMHOLZ, Dirk VANDEPITTE and David MOENS
6.1. Introduction 95
6.2. Interval finite element analysis 97
6.3. Convex-set analysis 99
6.4. Interval field analysis 100
6.4.1. Explicit interval field formulation 101
6.4.2. Interval fields based on KL expansion 103
6.4.3. Interval fields based on convex descriptors 105
6.5. Conclusion 105
6.6. Acknowledgments 106
6.7. References 106
Chapter 7. Convex Polytopic Models for the Static Response of Structures
with Uncertain-but-bounded Parameters 111
Zhiping QIU and Nan JIANG
7.1. Introduction 111
7.2. Problem statements 114
7.3. Analysis and solution of the convex polytopic model for the static
response of structures 116
7.4. Vertex solution theorem of the convex polytopic model for the static
response of structures 119
7.5. Review of the vertex solution theorem of the interval model for the
static response of structures 122
7.6. Numerical examples 127
7.6.1. Two-step bar 127
7.6.2. Ten-bar truss 130
7.6.3. Plane frame 135
7.7. Conclusion 141
7.8. Acknowledgments 141
7.9. References 141
Chapter 8. On the Interval Frequency Response of Cracked Beams with
Uncertain Damage 145
Roberta SANTORO
8.1. Introduction 146
8.2. Crack modeling for damaged beams 148
8.2.1. Finite element crack model 148
8.2.2. Continuous crack model 149
8.3. Statement of the problem 150
8.3.1. Interval model for the uncertain crack depth 151
8.3.2. Governing equations of damaged beams 152
8.3.3. Finite element model versus continuous model 154
8.4. Interval frequency response of multi-cracked beams 162
8.4.1. Interval deflection function in the FE model 162
8.4.2. Interval deflection function in the continuous model 165
8.5. Numerical applications 167
8.6. Concluding remarks 173
8.7. Acknowledgments 173
8.8. References 173
Chapter 9. Quantum-Inspired Topology Optimization 177
Xiaojun WANG, Bowen NI and Lei WANG
9.1. Introduction 177
9.2. General statements 180
9.2.1. Density-based continuum structural topology optimization formulation
180
9.2.2. Characteristics of quantum computing 181
9.3. Topology optimization design model based on quantum-inspired
evolutionary algorithms 183
9.3.1. Classic procedure of topology optimization based on the SIMP method
and optimality criteria 183
9.3.2. The fundamental theory of a quantum-inspired evolutionary algorithm
- DCQGA 186
9.3.3. Implementation of the integral topology optimization framework 189
9.4. A quantum annealing operator to accelerate the calculation and jump
out of local extremum 191
9.5. Numerical examples 195
9.5.1. Example of a short cantilever 195
9.5.2. Example of a wing rib 196
9.6. Conclusion 198
9.7. Acknowledgments 198
9.8. References 199
Chapter 10. Time Delay Vibrations and Almost Sure Stability in Vehicle
Dynamics 203
Walter V. WEDIG
10.1. Introduction to road vehicle dynamics 203
10.2. Delay resonances of half-car models on road 205
10.3. Extensions to multi-body vehicles on a random road 209
10.4. Non-stationary road excitations applying sinusoidal models 212
10.5. Resonance reduction or induction by means of colored noise 215
10.6. Lyapunov exponents and rotation numbers in vehicle dynamics 218
10.7. Concluding remarks and main new results 221
10.8. References 222
Chapter 11. Order Statistics Approach to Structural Optimization
Considering Robustness and Confidence of Responses 225
Makoto YAMAKAWA and Makoto OHSAKI
11.1. Introduction 225
11.2. Overview of order statistics 226
11.2.1. Definition of order statistics 226
11.2.2. Tolerance intervals and confidence intervals of quantiles 227
11.3. Robust design 229
11.3.1. Overview of the robust design problem 229
11.3.2. Worst-case-based method 230
11.3.3. Order statistics-based method 230
11.4. Numerical examples 231
11.4.1. Design response spectrum 231
11.4.2. Optimization of the building frame considering seismic responses
232
11.4.3. Multi-objective optimization considering robustness 236
11.5. Conclusion 239
11.6. References 240
List of Authors 243
Index 245
Summaries of Volumes 1 and 2 249