Modernisation, Mechanisation and Industrialisation of Concrete Structures (eBook, PDF)
Redaktion: Elliott, Kim S.; Hamid, Zuhairi Abd.
104,99 €
104,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
104,99 €
Als Download kaufen
104,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
104,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Modernisation, Mechanisation and Industrialisation of Concrete Structures (eBook, PDF)
Redaktion: Elliott, Kim S.; Hamid, Zuhairi Abd.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Modernisation, Mechanisation and Industrialisation of Concrete Structures discusses the manufacture of high quality prefabricated concrete construction components, and how that can be achieved through the application of developments in concrete technology, information modelling and best practice in design and manufacturing techniques.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 33.42MB
Modernisation, Mechanisation and Industrialisation of Concrete Structures discusses the manufacture of high quality prefabricated concrete construction components, and how that can be achieved through the application of developments in concrete technology, information modelling and best practice in design and manufacturing techniques.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 504
- Erscheinungstermin: 9. Februar 2017
- Englisch
- ISBN-13: 9781118876541
- Artikelnr.: 47880014
- Verlag: John Wiley & Sons
- Seitenzahl: 504
- Erscheinungstermin: 9. Februar 2017
- Englisch
- ISBN-13: 9781118876541
- Artikelnr.: 47880014
Kim S. Elliott is a consultant to the precast industry in the UK and Malaysia. He was Senior Lecturer in the School of Civil Engineering at Nottingham University from 1987-2010, and was formerly at Trent Concrete Structures Ltd., one of the UK's leading precast concrete manufacturers. An active researcher into the behaviour of precast concrete structures, he has published extensively on the subject. He is a member of FIB Commission on Prefabrication. Zuhairi Abd. Hamid is Executive Director of the Construction Research Institute of Malaysia (CREAM). With more than 32 years of experience in the construction industry, his research interests and expertise falls within the area of Strategic Management of IT in Construction, Strategic Facilities Management in the Health Sector, Structural dynamics (wind engineering and earthquake engineering), prefabricated building construction and the Open Building System.
About the Editors xi
Notes on Contributors xiii
Preface xvii
Part 1 Modernisation of Precast Concrete Structures 1
1 Historical and Chronological Development of Precast Concrete Structures 3
Kim S. Elliott
1.1 The five periods of development and optimisation 3
1.2 Developing years and the standardisation period 26
1.3 Optimisation and the lightweight period 34
1.3.1 Minimising beam and slab depths and structural zones 34
1.3.2 Orientation rule 38
1.3.3 Composite and continuous floor slabs 38
1.3.4 Composite and continuous internal beams 43
1.4 The thermal mass period 46
1.4.1 Background to fabric energy storage in precast framed and wall structures 46
1.4.2 Admittance and cooling capacity 48
1.4.3 Thermal resistance and U-values for precast ground and suspended floors 51
1.4.4 Conclusion to FES, cooling and thermal transmission 58
References 59
2 Industrial Building Systems (IBS) Project Implementation 61
Kim S. Elliott
2.1 Introduction 61
2.1.1 Definition of IBS 63
2.1.2 Advantages of IBS 64
2.1.3 Sustainability of IBS 67
2.1.4 Drawbacks of IBS 68
2.2 Routes to IBS procurement 69
2.2.1 Definitions 69
2.2.2 Preliminaries 70
2.2.3 Project design stages 71
2.2.4 Design and detailing practice 79
2.2.5 Structural design calculations and project drawings 80
2.2.6 Component schedules and the engineer's instructions to factory and site 87
2.3 Precast concrete IBS solution to seven-storey skeletal frame 89
2.4 Manufacture of precast concrete components and ancillaries 93
2.4.1 Requirements and potential for automation 93
2.4.2 Floor slabs by slip-forming and extrusion techniques 93
2.4.3 Comparisons of slip-forming and extrusion techniques, and r.c. slabs 102
2.4.4 Hydraulic extruder 102
2.4.5 Reinforced hollow core slabs 103
2.4.6 Automated embedment machines for mesh and fabrics in double-tee slabs 106
2.4.7 Optimised automation 109
2.4.8 Table top wall panels 110
2.4.9 Production of precast concrete wall panels using vertical circulation system 115
2.4.10 Control of compaction of concrete 118
2.4.11 Automation of rebar bending and wire-welded cages 118
2.5 Minimum project sizes and component efficiency for IBS 120
2.6 Design implications in construction matters 120
2.7 Conclusions 122
References 124
3 Best Practice and Lessons Learned in IBS Design, Detailing and Construction 125
Kim S. Elliott
3.1 Increasing off-site fabrication 125
3.2 Standardisation 133
3.3 Self-compacting concrete for precast components 137
3.4 Recycled precast concrete 142
3.5 Building services 144
3.6 Conclusions 147
References 147
4 Research and Development Towards the Optimisation of Precast Concrete Structures 149
Kim S. Elliott and Zuhairi Abd. Hamid
4.1 The research effort on precast concrete framed structures 149
4.1.1 Main themes of innovation, optimisation and implementation 149
4.1.2 Structural frame action and the role of connections 151
4.1.3 Advancement and optimisation of precast elements 156
4.1.4 Shear reduction of hcu on flexible supports 157
4.1.5 Continuity of bending moments at interior supports 159
4.1.6 Horizontal diaphragm action in hollow core floors without structural toppings 160
4.2 Precast frame connecti
Notes on Contributors xiii
Preface xvii
Part 1 Modernisation of Precast Concrete Structures 1
1 Historical and Chronological Development of Precast Concrete Structures 3
Kim S. Elliott
1.1 The five periods of development and optimisation 3
1.2 Developing years and the standardisation period 26
1.3 Optimisation and the lightweight period 34
1.3.1 Minimising beam and slab depths and structural zones 34
1.3.2 Orientation rule 38
1.3.3 Composite and continuous floor slabs 38
1.3.4 Composite and continuous internal beams 43
1.4 The thermal mass period 46
1.4.1 Background to fabric energy storage in precast framed and wall structures 46
1.4.2 Admittance and cooling capacity 48
1.4.3 Thermal resistance and U-values for precast ground and suspended floors 51
1.4.4 Conclusion to FES, cooling and thermal transmission 58
References 59
2 Industrial Building Systems (IBS) Project Implementation 61
Kim S. Elliott
2.1 Introduction 61
2.1.1 Definition of IBS 63
2.1.2 Advantages of IBS 64
2.1.3 Sustainability of IBS 67
2.1.4 Drawbacks of IBS 68
2.2 Routes to IBS procurement 69
2.2.1 Definitions 69
2.2.2 Preliminaries 70
2.2.3 Project design stages 71
2.2.4 Design and detailing practice 79
2.2.5 Structural design calculations and project drawings 80
2.2.6 Component schedules and the engineer's instructions to factory and site 87
2.3 Precast concrete IBS solution to seven-storey skeletal frame 89
2.4 Manufacture of precast concrete components and ancillaries 93
2.4.1 Requirements and potential for automation 93
2.4.2 Floor slabs by slip-forming and extrusion techniques 93
2.4.3 Comparisons of slip-forming and extrusion techniques, and r.c. slabs 102
2.4.4 Hydraulic extruder 102
2.4.5 Reinforced hollow core slabs 103
2.4.6 Automated embedment machines for mesh and fabrics in double-tee slabs 106
2.4.7 Optimised automation 109
2.4.8 Table top wall panels 110
2.4.9 Production of precast concrete wall panels using vertical circulation system 115
2.4.10 Control of compaction of concrete 118
2.4.11 Automation of rebar bending and wire-welded cages 118
2.5 Minimum project sizes and component efficiency for IBS 120
2.6 Design implications in construction matters 120
2.7 Conclusions 122
References 124
3 Best Practice and Lessons Learned in IBS Design, Detailing and Construction 125
Kim S. Elliott
3.1 Increasing off-site fabrication 125
3.2 Standardisation 133
3.3 Self-compacting concrete for precast components 137
3.4 Recycled precast concrete 142
3.5 Building services 144
3.6 Conclusions 147
References 147
4 Research and Development Towards the Optimisation of Precast Concrete Structures 149
Kim S. Elliott and Zuhairi Abd. Hamid
4.1 The research effort on precast concrete framed structures 149
4.1.1 Main themes of innovation, optimisation and implementation 149
4.1.2 Structural frame action and the role of connections 151
4.1.3 Advancement and optimisation of precast elements 156
4.1.4 Shear reduction of hcu on flexible supports 157
4.1.5 Continuity of bending moments at interior supports 159
4.1.6 Horizontal diaphragm action in hollow core floors without structural toppings 160
4.2 Precast frame connecti
About the Editors xi
Notes on Contributors xiii
Preface xvii
Part 1 Modernisation of Precast Concrete Structures 1
1 Historical and Chronological Development of Precast Concrete Structures 3
Kim S. Elliott
1.1 The five periods of development and optimisation 3
1.2 Developing years and the standardisation period 26
1.3 Optimisation and the lightweight period 34
1.3.1 Minimising beam and slab depths and structural zones 34
1.3.2 Orientation rule 38
1.3.3 Composite and continuous floor slabs 38
1.3.4 Composite and continuous internal beams 43
1.4 The thermal mass period 46
1.4.1 Background to fabric energy storage in precast framed and wall structures 46
1.4.2 Admittance and cooling capacity 48
1.4.3 Thermal resistance and U-values for precast ground and suspended floors 51
1.4.4 Conclusion to FES, cooling and thermal transmission 58
References 59
2 Industrial Building Systems (IBS) Project Implementation 61
Kim S. Elliott
2.1 Introduction 61
2.1.1 Definition of IBS 63
2.1.2 Advantages of IBS 64
2.1.3 Sustainability of IBS 67
2.1.4 Drawbacks of IBS 68
2.2 Routes to IBS procurement 69
2.2.1 Definitions 69
2.2.2 Preliminaries 70
2.2.3 Project design stages 71
2.2.4 Design and detailing practice 79
2.2.5 Structural design calculations and project drawings 80
2.2.6 Component schedules and the engineer's instructions to factory and site 87
2.3 Precast concrete IBS solution to seven-storey skeletal frame 89
2.4 Manufacture of precast concrete components and ancillaries 93
2.4.1 Requirements and potential for automation 93
2.4.2 Floor slabs by slip-forming and extrusion techniques 93
2.4.3 Comparisons of slip-forming and extrusion techniques, and r.c. slabs 102
2.4.4 Hydraulic extruder 102
2.4.5 Reinforced hollow core slabs 103
2.4.6 Automated embedment machines for mesh and fabrics in double-tee slabs 106
2.4.7 Optimised automation 109
2.4.8 Table top wall panels 110
2.4.9 Production of precast concrete wall panels using vertical circulation system 115
2.4.10 Control of compaction of concrete 118
2.4.11 Automation of rebar bending and wire-welded cages 118
2.5 Minimum project sizes and component efficiency for IBS 120
2.6 Design implications in construction matters 120
2.7 Conclusions 122
References 124
3 Best Practice and Lessons Learned in IBS Design, Detailing and Construction 125
Kim S. Elliott
3.1 Increasing off-site fabrication 125
3.2 Standardisation 133
3.3 Self-compacting concrete for precast components 137
3.4 Recycled precast concrete 142
3.5 Building services 144
3.6 Conclusions 147
References 147
4 Research and Development Towards the Optimisation of Precast Concrete Structures 149
Kim S. Elliott and Zuhairi Abd. Hamid
4.1 The research effort on precast concrete framed structures 149
4.1.1 Main themes of innovation, optimisation and implementation 149
4.1.2 Structural frame action and the role of connections 151
4.1.3 Advancement and optimisation of precast elements 156
4.1.4 Shear reduction of hcu on flexible supports 157
4.1.5 Continuity of bending moments at interior supports 159
4.1.6 Horizontal diaphragm action in hollow core floors without structural toppings 160
4.2 Precast frame connecti
Notes on Contributors xiii
Preface xvii
Part 1 Modernisation of Precast Concrete Structures 1
1 Historical and Chronological Development of Precast Concrete Structures 3
Kim S. Elliott
1.1 The five periods of development and optimisation 3
1.2 Developing years and the standardisation period 26
1.3 Optimisation and the lightweight period 34
1.3.1 Minimising beam and slab depths and structural zones 34
1.3.2 Orientation rule 38
1.3.3 Composite and continuous floor slabs 38
1.3.4 Composite and continuous internal beams 43
1.4 The thermal mass period 46
1.4.1 Background to fabric energy storage in precast framed and wall structures 46
1.4.2 Admittance and cooling capacity 48
1.4.3 Thermal resistance and U-values for precast ground and suspended floors 51
1.4.4 Conclusion to FES, cooling and thermal transmission 58
References 59
2 Industrial Building Systems (IBS) Project Implementation 61
Kim S. Elliott
2.1 Introduction 61
2.1.1 Definition of IBS 63
2.1.2 Advantages of IBS 64
2.1.3 Sustainability of IBS 67
2.1.4 Drawbacks of IBS 68
2.2 Routes to IBS procurement 69
2.2.1 Definitions 69
2.2.2 Preliminaries 70
2.2.3 Project design stages 71
2.2.4 Design and detailing practice 79
2.2.5 Structural design calculations and project drawings 80
2.2.6 Component schedules and the engineer's instructions to factory and site 87
2.3 Precast concrete IBS solution to seven-storey skeletal frame 89
2.4 Manufacture of precast concrete components and ancillaries 93
2.4.1 Requirements and potential for automation 93
2.4.2 Floor slabs by slip-forming and extrusion techniques 93
2.4.3 Comparisons of slip-forming and extrusion techniques, and r.c. slabs 102
2.4.4 Hydraulic extruder 102
2.4.5 Reinforced hollow core slabs 103
2.4.6 Automated embedment machines for mesh and fabrics in double-tee slabs 106
2.4.7 Optimised automation 109
2.4.8 Table top wall panels 110
2.4.9 Production of precast concrete wall panels using vertical circulation system 115
2.4.10 Control of compaction of concrete 118
2.4.11 Automation of rebar bending and wire-welded cages 118
2.5 Minimum project sizes and component efficiency for IBS 120
2.6 Design implications in construction matters 120
2.7 Conclusions 122
References 124
3 Best Practice and Lessons Learned in IBS Design, Detailing and Construction 125
Kim S. Elliott
3.1 Increasing off-site fabrication 125
3.2 Standardisation 133
3.3 Self-compacting concrete for precast components 137
3.4 Recycled precast concrete 142
3.5 Building services 144
3.6 Conclusions 147
References 147
4 Research and Development Towards the Optimisation of Precast Concrete Structures 149
Kim S. Elliott and Zuhairi Abd. Hamid
4.1 The research effort on precast concrete framed structures 149
4.1.1 Main themes of innovation, optimisation and implementation 149
4.1.2 Structural frame action and the role of connections 151
4.1.3 Advancement and optimisation of precast elements 156
4.1.4 Shear reduction of hcu on flexible supports 157
4.1.5 Continuity of bending moments at interior supports 159
4.1.6 Horizontal diaphragm action in hollow core floors without structural toppings 160
4.2 Precast frame connecti