61,95 €
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
61,95 €
61,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
Jetzt verschenken
61,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
  • Format: PDF

The new edition offers a student-friendly introduction to a history documenting the emergence of molecular biology techniques, methodology, genetics and epigenetics, and the molecular mechanisms that lead to adaptation after exercise, and explicitly links to outcomes in performance, nutrition, physical activity, and clinical exercise.

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 16.26MB
Produktbeschreibung
The new edition offers a student-friendly introduction to a history documenting the emergence of molecular biology techniques, methodology, genetics and epigenetics, and the molecular mechanisms that lead to adaptation after exercise, and explicitly links to outcomes in performance, nutrition, physical activity, and clinical exercise.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Adam P. Sharples, PhD, is a Professor of Molecular Physiology and Epigenetics at the Norwegian School of Sport Sciences (NiH), Olso, Norway; an institute ranked 2nd (out of 300+) in the world for sport and exercise sciences. He investigates the underlying cellular, molecular and epigenetic mechanisms of muscle growth (hypertrophy) and wasting (atrophy) using both cell modelling and whole-body approaches. His work first demonstrated that human muscle possesses an "epigenetic memory" of exercise. He used to play professional Rugby League in the UK. James P. Morton, PhD, is a Professor of Exercise Metabolism at Liverpool John Moores University (LJMU). His research evaluates the impact of nutrient availability on muscle metabolism during exercise and the molecular regulation of skeletal muscle adaptations to exercise training. James has also worked in a number of performance related roles across both high-performance sport and industry, working with some of the world's most high profile athletes, sports teams and institutions. Henning Wackerhage, PhD, is a Professor and Molecular Exercise Physiologist. He is specifically interested in the molecular mechanisms by which exercise improves our fitness and health, particularly the role of the so-called Hippo proteins in skeletal muscle and the association between the proteome, metabolome, athletic performance, disease and ageing.