52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
Jetzt verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
  • Format: PDF

Cockayne syndrome (CS) is a rare autosomal genetic disorder that was first identified almost 62 years ago by Alfred Cockayne and was named after him. The earliest publication record (PubMed) available is a paper by Marie et al in 1958. Since then 815 research papers including excellent reviews have been published (PubMed, December 2008), yet we are

Produktbeschreibung
Cockayne syndrome (CS) is a rare autosomal genetic disorder that was first identified almost 62 years ago by Alfred Cockayne and was named after him. The earliest publication record (PubMed) available is a paper by Marie et al in 1958. Since then 815 research papers including excellent reviews have been published (PubMed, December 2008), yet we are

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Shamim I. Ahmad. After obtaining his Masters Degree in Botany at Patna University, Bihar, India and his PhD in Molecular Genetics from Leicester University, England, he joined Nottingham Polytechnic as Grade 1 lecturer and subsequently promoted to SL post. Nottingham Polytechnic subsequently became Nottingham Trent University where, after serving for about 35 years, he took early retirement to spend the remaining time in writing books and full time research. For more than three decades he worked on different areas of biology including thymineless death in bacteria, generic control of nucleotide catabolism, development of anti-AIDS drugs, control of microbial infection of burns, phages of thermophilic bacteria and microbial flora of Chernobyl after nuclear accident. But his primary interest, which started 25 years ago, is DNA damage and repair, particularly near UV photolysis of biological compounds, production of reactive oxygen species and their implications on human health including skin cancer and xeroderma pigmentosum. He is also investigating photolysis of non-biological compounds such as 8-methoxypsoralen+UVA, mitomycin C, and nitrogen mustard and their importance in psoriasis treatment and in Fanconi anemia.