99,95 €
99,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
50 °P sammeln
99,95 €
99,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
50 °P sammeln
Als Download kaufen
99,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
50 °P sammeln
Jetzt verschenken
99,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
50 °P sammeln
  • Format: PDF

Biological molecular motors provide most cells with the dynamic systems required for their day-to-day existence. Examples occur in even the simplest organism (e.g. a bacteria virus), and the range of tasks that they carry out is vast. Over the last few years, there has been a large increase in the study of these motors, and it is becoming apparent

Produktbeschreibung
Biological molecular motors provide most cells with the dynamic systems required for their day-to-day existence. Examples occur in even the simplest organism (e.g. a bacteria virus), and the range of tasks that they carry out is vast. Over the last few years, there has been a large increase in the study of these motors, and it is becoming apparent

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
James Youell has been working as a research fellow since 2004 at the University of Portsmouth on the design of a high-throughput single-molecule drug development tool utilising molecular motors. Through the development of this system, he has worked alongside a pan European research team, incorporating cutting-edge experimental tools, to build the various biological and synthetic components required. Dr Youell has published a number of papers on the development of such synthetic biology devices and given invited seminars on the subject.



Keith Firman
is now retired from the University of Portsmouth, where he was reader in Molecular Biotechnology. He investigated the properties of type I restriction-modification systems. This led to the coordination of three consecutive European grants worth, in total, in excess of 4,500,000 to develop an electronic device for biosensing using single-molecule molecular motors. Dr Firman has published more than 50 papers and was also invited to participate in a number of international road-mapping exercises in nanotechnology.