Molecular Water Oxidation Catalysis (eBook, ePUB)
A Key Topic for New Sustainable Energy Conversion Schemes
Molecular Water Oxidation Catalysis (eBook, ePUB)
A Key Topic for New Sustainable Energy Conversion Schemes
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most important…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 20.9MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 304
- Erscheinungstermin: 14. April 2014
- Englisch
- ISBN-13: 9781118698624
- Artikelnr.: 41052924
- Verlag: John Wiley & Sons
- Seitenzahl: 304
- Erscheinungstermin: 14. April 2014
- Englisch
- ISBN-13: 9781118698624
- Artikelnr.: 41052924
-Cl)(bpy) 2(btpyan)]3+ 85 5.4 Mononuclear Ru-Aqua Complexes with a Dioxolene Ligand 91 5.4.1 Structural Characterization 91 5.4.2 Theoretical and Electrochemical Characterization 96 5.5 Mechanistic Investigation of Water Oxidation by Dinuclear Ru Complexes with NILs: Characterization of Key Intermediates 101 References 107 6. Recent Advances in the Field of Iridium-Catalyzed Molecular Water Oxidation 113 James A. Woods, Stefan Bernhard, and Martin Albrecht 6.1 Introduction 113 6.2 Bernhard 2008 [11] 114 6.3 Crabtree 2009 115 6.4 Crabtree 2010 116 6.5 Macchioni 2010 117 6.6 Albrecht/Bernhard 2010 117 6.7 Hetterscheid/Reek 2011 118 6.8 Crabtree 2011 119 6.9 Crabtree 2011 120 6.10 Lin 2011 120 6.11 Macchioni 2011 122 6.12 Grotjahn 2011 123 6.13 Fukuzumi 2011 123 6.14 Lin 2012 124 6.15 Crabtree 2012 125 6.16 Albrecht/Bernhard 2012 125 6.17 Crabtree 2012 126 6.18 Beller 2012 127 6.19 Lin 2012 128 6.20 Lloblet and Macchioni 2012 129 6.21 Analysis 130 References 131 7. Complexes of First Row d-Block Metals: Manganese 135 Philipp Kurz 7.1 Background 135 7.2 Oxidation States of Manganese in an Aqueous Environment 137 7.3 Dinuclear Manganese Complexes: Syntheses and Structures 138 7.4 Redox and Acid-Base Chemistry of Mn2-
-WDL Systems 139 7.5 Mn2 Systems: Oxygen Evolution (but not Water Oxidation) Catalysis 142 7.6 Mn2 Complexes/the OEC/Ru2 Catalysts: A Comparison 144 7.7 Heterogeneous Water Oxidation Catalysis by Mn>2 Systems 146 7.8 Conclusion 148 Acknowledgements 148 References 149 8. Molecular Water Oxidation Catalysts from Iron 153 W. Chadwick Ellis, Neal D. McDaniel, and Stefan Bernhard 8.1 Introduction 153 8.2 Fe-Tetrasulfophthalocyanine 154 8.3 Fe-TAML 155 8.4 Fe-mcp 157 8.5 Fe2O3 as a Microheterogeneous Catalyst 158 8.6 Conclusion 160 References 161 9. Water Oxidation by Co-Based Oxides with Molecular Properties 163 Marcel Risch, Katharina Klingan, Ivelina Zaharieva, and Holger Dau 9.1 Introduction 163 9.2 CoCat Formation 164 9.3 Structure and Structure-Function Relations 166 9.4 Functional Characterization 173 9.5 Directly Light-Driven Water Oxidation 175 References 180 10. Developing Molecular Copper Complexes for Water Oxidation 187 Shoshanna M. Barnett, Christopher R. Waidmann, Margaret L. Scheuermann, Jared C. Nesvet, Karen Goldberg and James M. Mayer 10.1 Introduction 187 10.2 A Biomimetic Approach 188 10.2.1 Thermochemistry: Developing Oxidant/Base Combinations as PCET Reagents 189 10.2.2 Copper Complexes with Alkylamine Ligands 190 10.2.3 Copper Complexes with Anionic Ligands 195 10.2.4 Lessons Learned: Thermochemical Insights and Oxidant/Base Compatibility 198 10.3 An Aqueous System: Electrocatalysis with (bpy)Cu(II) Complexes 198 10.3.1 System Selection: bpy + Cu 199 10.3.2 Observing Electrocatalysis 199 10.3.3 Catalyst Turnover Number and Turnover Frequency 201 10.3.4 Catalyst Speciation: Monomer, Dimer, or Nanoparticles? 203 10.4 Conclusion 206 Acknowledgement 206 References 207 11. Polyoxometalate Water Oxidation Catalytic Systems 211 Jordan M. Sumliner, James W. Vickers, Hongjin Lv, Yurii V. Geletii, and Craig L. Hill 11.1 Introduction 211 11.2 Recent POM WOCs 214 11.3 Assessing POM WOC Reactivity 220 11.4 The Ru(bpy)3 2+
S2O8 2-System 221 11.5 Ru(bpy) 3 3+ as an Oxidant for POM WOCs 222 11.6 Additional Aspects of WOC System Stability 224 11.7 Techniques for Assessing POM WOC Stability 224 11.8 Conclusion 227 Acknowledgments 228 References 228 12. Quantum Chemical Characterization of Water Oxidation Catalysts 233 Pere Miró, Mehmed Z. Ertem, Laura Gagliardi, and Christopher J. Cramer 12.1 Introduction 233 12.2 Computational Details 235 12.2.1 Density Functional Theory Calculations 235 12.2.2 Multiconfigurational Calculations 236 12.3 Methodology 237 12.3.1 Solvation and Standard Reduction Potentials 237 12.3.2 Multideterminantal State Energies 238 12.4 Water Oxidation Catalysts 238 12.4.1 Ruthenium-Based Catalysts 238 12.4.2 Cobalt-Based Catalysts 245 12.4.3 Iron-Based Catalysts 248 12.5 Conclusion 251 References 252 Index 257
-Cl)(bpy) 2(btpyan)]3+ 85 5.4 Mononuclear Ru-Aqua Complexes with a Dioxolene Ligand 91 5.4.1 Structural Characterization 91 5.4.2 Theoretical and Electrochemical Characterization 96 5.5 Mechanistic Investigation of Water Oxidation by Dinuclear Ru Complexes with NILs: Characterization of Key Intermediates 101 References 107 6. Recent Advances in the Field of Iridium-Catalyzed Molecular Water Oxidation 113 James A. Woods, Stefan Bernhard, and Martin Albrecht 6.1 Introduction 113 6.2 Bernhard 2008 [11] 114 6.3 Crabtree 2009 115 6.4 Crabtree 2010 116 6.5 Macchioni 2010 117 6.6 Albrecht/Bernhard 2010 117 6.7 Hetterscheid/Reek 2011 118 6.8 Crabtree 2011 119 6.9 Crabtree 2011 120 6.10 Lin 2011 120 6.11 Macchioni 2011 122 6.12 Grotjahn 2011 123 6.13 Fukuzumi 2011 123 6.14 Lin 2012 124 6.15 Crabtree 2012 125 6.16 Albrecht/Bernhard 2012 125 6.17 Crabtree 2012 126 6.18 Beller 2012 127 6.19 Lin 2012 128 6.20 Lloblet and Macchioni 2012 129 6.21 Analysis 130 References 131 7. Complexes of First Row d-Block Metals: Manganese 135 Philipp Kurz 7.1 Background 135 7.2 Oxidation States of Manganese in an Aqueous Environment 137 7.3 Dinuclear Manganese Complexes: Syntheses and Structures 138 7.4 Redox and Acid-Base Chemistry of Mn2-
-WDL Systems 139 7.5 Mn2 Systems: Oxygen Evolution (but not Water Oxidation) Catalysis 142 7.6 Mn2 Complexes/the OEC/Ru2 Catalysts: A Comparison 144 7.7 Heterogeneous Water Oxidation Catalysis by Mn>2 Systems 146 7.8 Conclusion 148 Acknowledgements 148 References 149 8. Molecular Water Oxidation Catalysts from Iron 153 W. Chadwick Ellis, Neal D. McDaniel, and Stefan Bernhard 8.1 Introduction 153 8.2 Fe-Tetrasulfophthalocyanine 154 8.3 Fe-TAML 155 8.4 Fe-mcp 157 8.5 Fe2O3 as a Microheterogeneous Catalyst 158 8.6 Conclusion 160 References 161 9. Water Oxidation by Co-Based Oxides with Molecular Properties 163 Marcel Risch, Katharina Klingan, Ivelina Zaharieva, and Holger Dau 9.1 Introduction 163 9.2 CoCat Formation 164 9.3 Structure and Structure-Function Relations 166 9.4 Functional Characterization 173 9.5 Directly Light-Driven Water Oxidation 175 References 180 10. Developing Molecular Copper Complexes for Water Oxidation 187 Shoshanna M. Barnett, Christopher R. Waidmann, Margaret L. Scheuermann, Jared C. Nesvet, Karen Goldberg and James M. Mayer 10.1 Introduction 187 10.2 A Biomimetic Approach 188 10.2.1 Thermochemistry: Developing Oxidant/Base Combinations as PCET Reagents 189 10.2.2 Copper Complexes with Alkylamine Ligands 190 10.2.3 Copper Complexes with Anionic Ligands 195 10.2.4 Lessons Learned: Thermochemical Insights and Oxidant/Base Compatibility 198 10.3 An Aqueous System: Electrocatalysis with (bpy)Cu(II) Complexes 198 10.3.1 System Selection: bpy + Cu 199 10.3.2 Observing Electrocatalysis 199 10.3.3 Catalyst Turnover Number and Turnover Frequency 201 10.3.4 Catalyst Speciation: Monomer, Dimer, or Nanoparticles? 203 10.4 Conclusion 206 Acknowledgement 206 References 207 11. Polyoxometalate Water Oxidation Catalytic Systems 211 Jordan M. Sumliner, James W. Vickers, Hongjin Lv, Yurii V. Geletii, and Craig L. Hill 11.1 Introduction 211 11.2 Recent POM WOCs 214 11.3 Assessing POM WOC Reactivity 220 11.4 The Ru(bpy)3 2+
S2O8 2-System 221 11.5 Ru(bpy) 3 3+ as an Oxidant for POM WOCs 222 11.6 Additional Aspects of WOC System Stability 224 11.7 Techniques for Assessing POM WOC Stability 224 11.8 Conclusion 227 Acknowledgments 228 References 228 12. Quantum Chemical Characterization of Water Oxidation Catalysts 233 Pere Miró, Mehmed Z. Ertem, Laura Gagliardi, and Christopher J. Cramer 12.1 Introduction 233 12.2 Computational Details 235 12.2.1 Density Functional Theory Calculations 235 12.2.2 Multiconfigurational Calculations 236 12.3 Methodology 237 12.3.1 Solvation and Standard Reduction Potentials 237 12.3.2 Multideterminantal State Energies 238 12.4 Water Oxidation Catalysts 238 12.4.1 Ruthenium-Based Catalysts 238 12.4.2 Cobalt-Based Catalysts 245 12.4.3 Iron-Based Catalysts 248 12.5 Conclusion 251 References 252 Index 257