More Statistical and Methodological Myths and Urban Legends (eBook, ePUB)
Doctrine, Verity and Fable in Organizational and Social Sciences
Redaktion: Lance, Charles E.; Vandenberg, Robert J.
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
More Statistical and Methodological Myths and Urban Legends (eBook, ePUB)
Doctrine, Verity and Fable in Organizational and Social Sciences
Redaktion: Lance, Charles E.; Vandenberg, Robert J.
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides an up-to-date review of commonly undertaken methodological and statistical practices that are based partially in sound scientific rationale and partially in unfounded lore.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 12.13MB
Andere Kunden interessierten sich auch für
- More Statistical and Methodological Myths and Urban Legends (eBook, PDF)51,95 €
- Statistical and Methodological Myths and Urban Legends (eBook, ePUB)61,95 €
- Statistical and Methodological Myths and Urban Legends (eBook, PDF)61,95 €
- Methodological Issues in Aging Research (eBook, ePUB)49,95 €
- Barbara M. ByrneStructural Equation Modeling with Mplus (eBook, ePUB)56,95 €
- Tiffany A. WhittakerA Beginner's Guide to Structural Equation Modeling (eBook, ePUB)71,95 €
- Joel CollierApplied Structural Equation Modeling using AMOS (eBook, ePUB)57,95 €
-
-
-
This book provides an up-to-date review of commonly undertaken methodological and statistical practices that are based partially in sound scientific rationale and partially in unfounded lore.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 368
- Erscheinungstermin: 5. November 2014
- Englisch
- ISBN-13: 9781135039424
- Artikelnr.: 41834513
- Verlag: Taylor & Francis
- Seitenzahl: 368
- Erscheinungstermin: 5. November 2014
- Englisch
- ISBN-13: 9781135039424
- Artikelnr.: 41834513
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Charles E. Lance is Principal, Organizational Research & Development and Professor Emeritus of Industrial/Organizational Psychology at the University of Georgia, USA. Robert J. Vandenberg is the Robert O. Arnold Professor of Business in the Department of Management, Terry College of Business at the University of Georgia, USA.
Part I: General Issues 1. Is Ours a Hard Science (And Do We Care)? Ronald
S. Landis and José M. Cortina 2. Publication Bias: Understanding the Myths
Concerning Threats to the Advancement of Science George C. Banks, Sven
Kepes, and Michael A. McDanielPart II: Design Issues 3. Red-Headed No More:
Tipping Points in Qualitative Research in Management Anne D. Smith, Laura
T. Madden, and Donde Ashmos Plowman 4. Two Waves of Measurement Do Not a
Longitudinal Study Make Robert E. Ployhart, and William I. MacKenzie Jr.
5. The Problem of Generational Change: Why Cross-Sectional Designs Are
Inadequate for Investigating Generational Differences Brittany Gentile,
Lauren A. Wood, Jean M. Twenge, Brian J. Hoffman, and W. Keith Campbell 6.
Negatively Worded Items Negatively Impact Survey Research Dev K. Dalal and
Nathan T. Carter 7. Missing Data Bias: Exactly How Bad Is Pairwise
Deletion? Daniel A. Newman and Jonathan M. Cottrell 8. Size Matters... Just
Not in the Way that You Think: Myths Surrounding Sample Size Requirements
for Statistical Analyses Scott Tonidandel, Eleanor B. Williams, and James
M. LeBretonPart III: Analytical Issues 9. Weight a Minute... What You See
in a Weighted Composite Is Probably Not What You Get! Frederick L. Oswald,
Dan J. Putka, and Jisoo Ock 10. Debunking Myths and Urban Legends about How
to Identify Influential Outliers Herman Aguinis and Harry Joo 11. Pulling
the Sobel Test Up By Its Bootstraps Joel Koopman, Michael Howe, and John R.
HollenbeckPart IV: Inferential Issues 12. "The" Reliability of Job
Performance Ratins Equals 0.52 Dan J. Putka and Brian J. Hoffman 13. Use of
"Independent" Meausres Does Not Solve the Shared Method Bias Problem
Charles E. Lance and Allison B. Siminovsky 14. The Not-So-Direct
Cross-Level Direct Effect Alexander C. LoPilato and Robert J. Vandenberg
15. Aggregation Aggravation: The Fallacy of the Wrong Level Revisited
David J. Woehr, Andrew C. Loignon, and Paul Schmidt 16. The Practical
Importance of Meaurement Invariance Neal Schmitt and Abdifatah A. Ali
S. Landis and José M. Cortina 2. Publication Bias: Understanding the Myths
Concerning Threats to the Advancement of Science George C. Banks, Sven
Kepes, and Michael A. McDanielPart II: Design Issues 3. Red-Headed No More:
Tipping Points in Qualitative Research in Management Anne D. Smith, Laura
T. Madden, and Donde Ashmos Plowman 4. Two Waves of Measurement Do Not a
Longitudinal Study Make Robert E. Ployhart, and William I. MacKenzie Jr.
5. The Problem of Generational Change: Why Cross-Sectional Designs Are
Inadequate for Investigating Generational Differences Brittany Gentile,
Lauren A. Wood, Jean M. Twenge, Brian J. Hoffman, and W. Keith Campbell 6.
Negatively Worded Items Negatively Impact Survey Research Dev K. Dalal and
Nathan T. Carter 7. Missing Data Bias: Exactly How Bad Is Pairwise
Deletion? Daniel A. Newman and Jonathan M. Cottrell 8. Size Matters... Just
Not in the Way that You Think: Myths Surrounding Sample Size Requirements
for Statistical Analyses Scott Tonidandel, Eleanor B. Williams, and James
M. LeBretonPart III: Analytical Issues 9. Weight a Minute... What You See
in a Weighted Composite Is Probably Not What You Get! Frederick L. Oswald,
Dan J. Putka, and Jisoo Ock 10. Debunking Myths and Urban Legends about How
to Identify Influential Outliers Herman Aguinis and Harry Joo 11. Pulling
the Sobel Test Up By Its Bootstraps Joel Koopman, Michael Howe, and John R.
HollenbeckPart IV: Inferential Issues 12. "The" Reliability of Job
Performance Ratins Equals 0.52 Dan J. Putka and Brian J. Hoffman 13. Use of
"Independent" Meausres Does Not Solve the Shared Method Bias Problem
Charles E. Lance and Allison B. Siminovsky 14. The Not-So-Direct
Cross-Level Direct Effect Alexander C. LoPilato and Robert J. Vandenberg
15. Aggregation Aggravation: The Fallacy of the Wrong Level Revisited
David J. Woehr, Andrew C. Loignon, and Paul Schmidt 16. The Practical
Importance of Meaurement Invariance Neal Schmitt and Abdifatah A. Ali
Part I: General Issues 1. Is Ours a Hard Science (And Do We Care)? Ronald
S. Landis and José M. Cortina 2. Publication Bias: Understanding the Myths
Concerning Threats to the Advancement of Science George C. Banks, Sven
Kepes, and Michael A. McDanielPart II: Design Issues 3. Red-Headed No More:
Tipping Points in Qualitative Research in Management Anne D. Smith, Laura
T. Madden, and Donde Ashmos Plowman 4. Two Waves of Measurement Do Not a
Longitudinal Study Make Robert E. Ployhart, and William I. MacKenzie Jr.
5. The Problem of Generational Change: Why Cross-Sectional Designs Are
Inadequate for Investigating Generational Differences Brittany Gentile,
Lauren A. Wood, Jean M. Twenge, Brian J. Hoffman, and W. Keith Campbell 6.
Negatively Worded Items Negatively Impact Survey Research Dev K. Dalal and
Nathan T. Carter 7. Missing Data Bias: Exactly How Bad Is Pairwise
Deletion? Daniel A. Newman and Jonathan M. Cottrell 8. Size Matters... Just
Not in the Way that You Think: Myths Surrounding Sample Size Requirements
for Statistical Analyses Scott Tonidandel, Eleanor B. Williams, and James
M. LeBretonPart III: Analytical Issues 9. Weight a Minute... What You See
in a Weighted Composite Is Probably Not What You Get! Frederick L. Oswald,
Dan J. Putka, and Jisoo Ock 10. Debunking Myths and Urban Legends about How
to Identify Influential Outliers Herman Aguinis and Harry Joo 11. Pulling
the Sobel Test Up By Its Bootstraps Joel Koopman, Michael Howe, and John R.
HollenbeckPart IV: Inferential Issues 12. "The" Reliability of Job
Performance Ratins Equals 0.52 Dan J. Putka and Brian J. Hoffman 13. Use of
"Independent" Meausres Does Not Solve the Shared Method Bias Problem
Charles E. Lance and Allison B. Siminovsky 14. The Not-So-Direct
Cross-Level Direct Effect Alexander C. LoPilato and Robert J. Vandenberg
15. Aggregation Aggravation: The Fallacy of the Wrong Level Revisited
David J. Woehr, Andrew C. Loignon, and Paul Schmidt 16. The Practical
Importance of Meaurement Invariance Neal Schmitt and Abdifatah A. Ali
S. Landis and José M. Cortina 2. Publication Bias: Understanding the Myths
Concerning Threats to the Advancement of Science George C. Banks, Sven
Kepes, and Michael A. McDanielPart II: Design Issues 3. Red-Headed No More:
Tipping Points in Qualitative Research in Management Anne D. Smith, Laura
T. Madden, and Donde Ashmos Plowman 4. Two Waves of Measurement Do Not a
Longitudinal Study Make Robert E. Ployhart, and William I. MacKenzie Jr.
5. The Problem of Generational Change: Why Cross-Sectional Designs Are
Inadequate for Investigating Generational Differences Brittany Gentile,
Lauren A. Wood, Jean M. Twenge, Brian J. Hoffman, and W. Keith Campbell 6.
Negatively Worded Items Negatively Impact Survey Research Dev K. Dalal and
Nathan T. Carter 7. Missing Data Bias: Exactly How Bad Is Pairwise
Deletion? Daniel A. Newman and Jonathan M. Cottrell 8. Size Matters... Just
Not in the Way that You Think: Myths Surrounding Sample Size Requirements
for Statistical Analyses Scott Tonidandel, Eleanor B. Williams, and James
M. LeBretonPart III: Analytical Issues 9. Weight a Minute... What You See
in a Weighted Composite Is Probably Not What You Get! Frederick L. Oswald,
Dan J. Putka, and Jisoo Ock 10. Debunking Myths and Urban Legends about How
to Identify Influential Outliers Herman Aguinis and Harry Joo 11. Pulling
the Sobel Test Up By Its Bootstraps Joel Koopman, Michael Howe, and John R.
HollenbeckPart IV: Inferential Issues 12. "The" Reliability of Job
Performance Ratins Equals 0.52 Dan J. Putka and Brian J. Hoffman 13. Use of
"Independent" Meausres Does Not Solve the Shared Method Bias Problem
Charles E. Lance and Allison B. Siminovsky 14. The Not-So-Direct
Cross-Level Direct Effect Alexander C. LoPilato and Robert J. Vandenberg
15. Aggregation Aggravation: The Fallacy of the Wrong Level Revisited
David J. Woehr, Andrew C. Loignon, and Paul Schmidt 16. The Practical
Importance of Meaurement Invariance Neal Schmitt and Abdifatah A. Ali