Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book gives the complete classification of Moufang polygons, starting from first principles. In particular, it may serve as an introduction to the various important algebraic concepts which arise in this classification including alternative division rings, quadratic Jordan division algebras of degree three, pseudo-quadratic forms, BN-pairs and norm splittings of quadratic forms. This book also contains a new proof of the classification of irreducible spherical buildings of rank at least three based on the observation that all the irreducible rank two residues of such a building are Moufang…mehr
This book gives the complete classification of Moufang polygons, starting from first principles. In particular, it may serve as an introduction to the various important algebraic concepts which arise in this classification including alternative division rings, quadratic Jordan division algebras of degree three, pseudo-quadratic forms, BN-pairs and norm splittings of quadratic forms. This book also contains a new proof of the classification of irreducible spherical buildings of rank at least three based on the observation that all the irreducible rank two residues of such a building are Moufang polygons. In an appendix, the connection between spherical buildings and algebraic groups is recalled.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Jacques Tits, College de France, Paris, France / Richard M. Weiss, Tufts University, Medford, MA, USA
Inhaltsangabe
I Preliminary Results.- 1 Introduction.- 2 Some Definitions.- 3 Generalized Polygons.- 4 Moufang Polygons.- 5 Commutator Relations.- 6 Opposite Root Groups.- 7 A Uniqueness Lemma.- 8 A Construction.- II Nine Families of Moufang Polygons.- 9 Alternative Division Rings, I.- 10 Indifferent and Octagonal Sets.- 11 Involutory Sets and Pseudo-Quadratic Forms.- 12 Quadratic Forms of Type E6, E7 and E8, I.- 13 Quadratic Forms of Type E6, E7 and E8, II.- 14 Quadratic Forms of Type F4.- 15 Hexagonal Systems, I.- 16 An Inventory of Moufang Polygons.- 17 Main Results.- III The Classification of Moufang Polygons.- 18 A Bound on n.- 19 Triangles.- 20 Alternative Division Rings, II.- 21 Quadrangles.- 22 Quadrangles of Involution Type.- 23 Quadrangles of Quadratic Form Type.- 24 Quadrangles of Indifferent Type.- 25 Quadrangles of Pseudo-Quadratic Form Type, I.- 26 Quadrangles of Pseudo-Quadratic Form Type, II.- 27 Quadrangles of Type E6, E7 and E8.- 28 Quadrangles of Type F4.- 29 Hexagons.- 30 Hexagonal Systems, II.- 31 Octagons.- 32 Existence.- IV More Results on Moufang Polygons.- 33 BN-Pairs.- 34 Finite Moufang Polygons.- 35 Isotopes.- 36 Isomorphic Hexagonal Systems.- 37 Automorphisms.- 38 Isomorphic Quadrangles.- V Moufang Polygons and Spherical Buildings.- 39 Chamber Systems.- 40 Spherical Buildings.- 41 Classical, Algebraic and Mixed Buildings.- 42 Appendix.- Index of Notation.
I Preliminary Results.- 1 Introduction.- 2 Some Definitions.- 3 Generalized Polygons.- 4 Moufang Polygons.- 5 Commutator Relations.- 6 Opposite Root Groups.- 7 A Uniqueness Lemma.- 8 A Construction.- II Nine Families of Moufang Polygons.- 9 Alternative Division Rings, I.- 10 Indifferent and Octagonal Sets.- 11 Involutory Sets and Pseudo-Quadratic Forms.- 12 Quadratic Forms of Type E6, E7 and E8, I.- 13 Quadratic Forms of Type E6, E7 and E8, II.- 14 Quadratic Forms of Type F4.- 15 Hexagonal Systems, I.- 16 An Inventory of Moufang Polygons.- 17 Main Results.- III The Classification of Moufang Polygons.- 18 A Bound on n.- 19 Triangles.- 20 Alternative Division Rings, II.- 21 Quadrangles.- 22 Quadrangles of Involution Type.- 23 Quadrangles of Quadratic Form Type.- 24 Quadrangles of Indifferent Type.- 25 Quadrangles of Pseudo-Quadratic Form Type, I.- 26 Quadrangles of Pseudo-Quadratic Form Type, II.- 27 Quadrangles of Type E6, E7 and E8.- 28 Quadrangles of Type F4.- 29 Hexagons.- 30 Hexagonal Systems, II.- 31 Octagons.- 32 Existence.- IV More Results on Moufang Polygons.- 33 BN-Pairs.- 34 Finite Moufang Polygons.- 35 Isotopes.- 36 Isomorphic Hexagonal Systems.- 37 Automorphisms.- 38 Isomorphic Quadrangles.- V Moufang Polygons and Spherical Buildings.- 39 Chamber Systems.- 40 Spherical Buildings.- 41 Classical, Algebraic and Mixed Buildings.- 42 Appendix.- Index of Notation.
Rezensionen
From the reviews: "In this excellently written book, the authors give a full classification for Moufang polygons. ... The book is self contained ... . the content of the book is accessible for motivated graduate students and researchers from every branch of mathematics. We recommend this book for everybody who is interested in the developments of the modern algebra, geometry or combinatorics." (Gábor P. Nagy, Acta Scientiarum Mathematicarum, Vol. 71, 2005) "The publication of this long-awaited book is a major event for geometry in general, and for the theory of buildings in particular. ... The classifications established in this book are splendid achievements of fundamental significance. The whole book is extremely well written, in a clear and concise style ... . It is the definitive treatment and a standard reference." (Theo Grundhöfer, Mathematical Reviews, Issue 2003 m) "This book contains the complete classification of all Moufang generalized polygons, including the full proof. ... So, in conclusion, the book is a Bible for everyone interested in classification results related to spherical buildings. It is written in a very clear and concise way. It should be in the library of every mathematician as one of the major results in the theory of (Tits) buildings, (combinatorial) incidence geometry and (algebraic) group theory." (Hendrik Van Maldeghem, Bulletin of the Belgian Mathematical Society, Vol. 11 (3), 2005)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826