48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: ePub

The book is directed to the numerical integration (solution) of systems of partial differential equations (PDEs) for which the boundary conditions move in space. In applications, the physical boundaries move as the solution evolves in time. The book provides examples of the applications in tumor growth and atherosclerosis

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 12.08MB
Produktbeschreibung
The book is directed to the numerical integration (solution) of systems of partial differential equations (PDEs) for which the boundary conditions move in space. In applications, the physical boundaries move as the solution evolves in time. The book provides examples of the applications in tumor growth and atherosclerosis


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
William E. Schiesser, emeritus professor at Lehigh University. Schiesser is the Emeritus McCann Professor in the chemical and biomolecular engineering department as well as a former professor in the mathematics department. recently authored several books on computer-based solutions to model real-life phenomena, such as the development of Parkinson's disease.Schiesser holds a Ph.D. from Princeton University and an honorary Sc.D. from the University of Mons, Belgium. He is the author or co-author of numerous books in his field of research on numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs) and the development of mathematical models based on ODE/DAE/PDEs.