83,95 €
83,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
42 °P sammeln
83,95 €
83,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
42 °P sammeln
Als Download kaufen
83,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
42 °P sammeln
Jetzt verschenken
83,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
42 °P sammeln
  • Format: ePub

Multi-robot Exploration for Environmental Monitoring: The Resource Constrained Perspective provides readers with the necessary robotics and mathematical tools required to realize the correct architecture. The architecture discussed in the book is not confined to environment monitoring, but can also be extended to search-and-rescue, border patrolling, crowd management and related applications. Several law enforcement agencies have already started to deploy UAVs, but instead of using teleoperated UAVs this book proposes methods to fully automate surveillance missions. Similarly, several…mehr

Produktbeschreibung
Multi-robot Exploration for Environmental Monitoring: The Resource Constrained Perspective provides readers with the necessary robotics and mathematical tools required to realize the correct architecture. The architecture discussed in the book is not confined to environment monitoring, but can also be extended to search-and-rescue, border patrolling, crowd management and related applications. Several law enforcement agencies have already started to deploy UAVs, but instead of using teleoperated UAVs this book proposes methods to fully automate surveillance missions. Similarly, several government agencies like the US-EPA can benefit from this book by automating the process.

Several challenges when deploying such models in real missions are addressed and solved, thus laying stepping stones towards realizing the architecture proposed. This book will be a great resource for graduate students in Computer Science, Computer Engineering, Robotics, Machine Learning and Mechatronics.

  • Analyzes the constant conflict between machine learning models and robot resources
  • Presents a novel range estimation framework tested on real robots (custom built and commercially available)

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Kshitij Tiwari is a Postdoctoral Researcher at the Department of Electrical Engineering & Automation, School of Electrical Engineering, Aalto University, Finland. He
works with the Intelligent Robotics Group within the Department. He received the Ph.D. (2018) from the Japan Advanced Institute of Science & Technology (JAIST),
Japan. He obtained the M.Sc. in Artificial Intelligence with a special focus in Intelligent Robotics from the University of Edinburgh (2014) and the B.Engg. in Electronics & Communication from the University of Hong Kong (2013). His research interests include (but are not limited to) field robotics, applied machine learning, neuronavigation, path planning under uncertainty, and related domains.