Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics.
Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Ardo van den Hout
Inhaltsangabe
Preface Introduction Multi-state survival models Basic concepts Examples Overview of methods and literature Data used in this book Modelling Survival Data Features of survival data and basic terminology Hazard, density and survivor function Parametric distributions for time to event data Regression models for the hazard Piecewise-constant hazard Maximum likelihood estimation Example: survival in the CAV study Progressive Three-State Survival Model Features of multi-state data and basic terminology Parametric models Regression models for the hazards Piecewise-constant hazards Maximum likelihood estimation A simulation study Example General Multi-State Survival Model Discrete-time Markov process Continuous-time Markov processes Hazard regression models for transition intensities Piecewise-constant hazards Maximum likelihood estimation Scoring algorithm Model comparison Example Model validation Example Frailty Models Mixed-effects models and frailty terms Parametric frailty distributions Marginal likelihood estimation Monte-Carlo Expectation-Maximisation algorithm Example: frailty in ELSA Non-parametric frailty distribution Example: frailty in ELSA (continued) Bayesian Inference for Multi-State Survival Models Introduction Gibbs sampler Deviance Information Criterion (DIC) Example: frailty in ELSA (continued) Inference using the BUGS software Redifual State-Specific Life Expectancy Introduction Definitions and data considerations Computation: integration Example: a three-state survival process Computation: micro-simulation Example: life expectancies in CFAS Further TopicsDiscrete-time models for continuous-time processes Using cross-sectional data Missing state data Modelling the first observed state Misclassification of states Smoothing splines and scoring Semi-Markov models Matrix P(t) When Matrix Q is Constant Two-state models Three-state models Models with more than three states Scoring for the Progressive Three-State Model Some Code for the R and BUGS Software General-purpose optimiser Code for Chapter 2 Code for Chapter 3 Code for Chapter 4 Code for numerical integration Code for Chapter 6 Bibliography Index
Preface
Introduction Multi-state survival models Basic concepts Examples Overview of methods and literature Data used in this book
Modelling Survival Data Features of survival data and basic terminology Hazard, density and survivor function Parametric distributions for time to event data Regression models for the hazard Piecewise-constant hazard Maximum likelihood estimation Example: survival in the CAV study
Progressive Three-State Survival Model Features of multi-state data and basic terminology Parametric models Regression models for the hazards Piecewise-constant hazards Maximum likelihood estimation A simulation study Example
General Multi-State Survival Model Discrete-time Markov process Continuous-time Markov processes Hazard regression models for transition intensities Piecewise-constant hazards Maximum likelihood estimation Scoring algorithm Model comparison Example Model validation Example
Frailty Models Mixed-effects models and frailty terms Parametric frailty distributions Marginal likelihood estimation Monte-Carlo Expectation-Maximisation algorithm Example: frailty in ELSA Non-parametric frailty distribution Example: frailty in ELSA (continued)
Bayesian Inference for Multi-State Survival Models Introduction Gibbs sampler Deviance Information Criterion (DIC) Example: frailty in ELSA (continued) Inference using the BUGS software
Redifual State-Specific Life Expectancy Introduction Definitions and data considerations Computation: integration Example: a three-state survival process Computation: micro-simulation Example: life expectancies in CFAS
Further Topics Discrete-time models for continuous-time processes Using cross-sectional data Missing state data Modelling the first observed state Misclassification of states Smoothing splines and scoring Semi-Markov models
Matrix P(t) When Matrix Q is Constant Two-state models Three-state models Models with more than three states
Scoring for the Progressive Three-State Model
Some Code for the R and BUGS Software General-purpose optimiser Code for Chapter 2 Code for Chapter 3 Code for Chapter 4 Code for numerical integration Code for Chapter 6
Preface Introduction Multi-state survival models Basic concepts Examples Overview of methods and literature Data used in this book Modelling Survival Data Features of survival data and basic terminology Hazard, density and survivor function Parametric distributions for time to event data Regression models for the hazard Piecewise-constant hazard Maximum likelihood estimation Example: survival in the CAV study Progressive Three-State Survival Model Features of multi-state data and basic terminology Parametric models Regression models for the hazards Piecewise-constant hazards Maximum likelihood estimation A simulation study Example General Multi-State Survival Model Discrete-time Markov process Continuous-time Markov processes Hazard regression models for transition intensities Piecewise-constant hazards Maximum likelihood estimation Scoring algorithm Model comparison Example Model validation Example Frailty Models Mixed-effects models and frailty terms Parametric frailty distributions Marginal likelihood estimation Monte-Carlo Expectation-Maximisation algorithm Example: frailty in ELSA Non-parametric frailty distribution Example: frailty in ELSA (continued) Bayesian Inference for Multi-State Survival Models Introduction Gibbs sampler Deviance Information Criterion (DIC) Example: frailty in ELSA (continued) Inference using the BUGS software Redifual State-Specific Life Expectancy Introduction Definitions and data considerations Computation: integration Example: a three-state survival process Computation: micro-simulation Example: life expectancies in CFAS Further TopicsDiscrete-time models for continuous-time processes Using cross-sectional data Missing state data Modelling the first observed state Misclassification of states Smoothing splines and scoring Semi-Markov models Matrix P(t) When Matrix Q is Constant Two-state models Three-state models Models with more than three states Scoring for the Progressive Three-State Model Some Code for the R and BUGS Software General-purpose optimiser Code for Chapter 2 Code for Chapter 3 Code for Chapter 4 Code for numerical integration Code for Chapter 6 Bibliography Index
Preface
Introduction Multi-state survival models Basic concepts Examples Overview of methods and literature Data used in this book
Modelling Survival Data Features of survival data and basic terminology Hazard, density and survivor function Parametric distributions for time to event data Regression models for the hazard Piecewise-constant hazard Maximum likelihood estimation Example: survival in the CAV study
Progressive Three-State Survival Model Features of multi-state data and basic terminology Parametric models Regression models for the hazards Piecewise-constant hazards Maximum likelihood estimation A simulation study Example
General Multi-State Survival Model Discrete-time Markov process Continuous-time Markov processes Hazard regression models for transition intensities Piecewise-constant hazards Maximum likelihood estimation Scoring algorithm Model comparison Example Model validation Example
Frailty Models Mixed-effects models and frailty terms Parametric frailty distributions Marginal likelihood estimation Monte-Carlo Expectation-Maximisation algorithm Example: frailty in ELSA Non-parametric frailty distribution Example: frailty in ELSA (continued)
Bayesian Inference for Multi-State Survival Models Introduction Gibbs sampler Deviance Information Criterion (DIC) Example: frailty in ELSA (continued) Inference using the BUGS software
Redifual State-Specific Life Expectancy Introduction Definitions and data considerations Computation: integration Example: a three-state survival process Computation: micro-simulation Example: life expectancies in CFAS
Further Topics Discrete-time models for continuous-time processes Using cross-sectional data Missing state data Modelling the first observed state Misclassification of states Smoothing splines and scoring Semi-Markov models
Matrix P(t) When Matrix Q is Constant Two-state models Three-state models Models with more than three states
Scoring for the Progressive Three-State Model
Some Code for the R and BUGS Software General-purpose optimiser Code for Chapter 2 Code for Chapter 3 Code for Chapter 4 Code for numerical integration Code for Chapter 6
Bibliography
Index
Rezensionen
"This book introduces Markov models for studying transitions between states over time, when the exact times of transitions are not always observed. Such data are common in medicine, epidemiology, demography, and social sciences research. The multi-state survival modeling framework can be useful for investigating potential associations between covariates and the risk of moving between states and for prediction of multi-state survival processes. The book is appropriate for researchers with a bachelor's or master's degree knowledge of mathematical statistics. No prior knowledge of survival analysis or stochastic processes is assumed. ... Multi-State Survival Models for Interval-Censored Data serves as a useful starting point for learning about multi-state survival models." -Li C. Cheung, National Cancer Institute, in the Journal of the American Statistical Association, January 2018
"This book aims to provide an overview of the key issues in multistate models, conduct and analysis of models with interval censoring. Applications of the book concern on longitudinal data and most of them are subject to interval censoring. The book contains theoretical and applicable examples of different multistate models. ... In summary, this book contains an excellent theoretical coverage of multistate models concepts and different methods with practical examples and codes, and deals with other topics relevant this kind of modelling in a comprehensive but summarised way." - Morteza Hajihosseini, ISCB News, May 2017
"This is the first book that I know of devoted to multi-state models for intermittently-observed data. Even though this is a common situation in medical and social statistics, these methods have only previously been covered in scattered papers, software manuals and book chapters. The level is approximately suitable for a postgraduate statistics student or applied statistician. The structure is clear, gradually building up