73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This excellent survey of state-of-the-art techniques discusses the MTCMOS technology that has emerged as an increasingly popular technique to control the escalating leakage power, while maintaining high performance. It addresses the leakage problem in a number of designs for combinational, sequential, dynamic and current-steering logic.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 22.49MB
Andere Kunden interessierten sich auch für
- Georges GielenSymbolic Analysis for Automated Design of Analog Integrated Circuits (eBook, PDF)113,95 €
- Alice WangSub-threshold Design for Ultra Low-Power Systems (eBook, PDF)113,95 €
- Thomas D. BurdEnergy Efficient Microprocessor Design (eBook, PDF)73,95 €
- Andrew B. KahngOn Optimal Interconnections for VLSI (eBook, PDF)113,95 €
- Amit MehrotraNoise Analysis of Radio Frequency Circuits (eBook, PDF)73,95 €
- Vaughn BetzArchitecture and CAD for Deep-Submicron FPGAS (eBook, PDF)161,95 €
- Ivan S. KourtevTiming Optimization Through Clock Skew Scheduling (eBook, PDF)73,95 €
-
-
-
This excellent survey of state-of-the-art techniques discusses the MTCMOS technology that has emerged as an increasingly popular technique to control the escalating leakage power, while maintaining high performance. It addresses the leakage problem in a number of designs for combinational, sequential, dynamic and current-steering logic.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 216
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461503910
- Artikelnr.: 43991662
- Verlag: Springer New York
- Seitenzahl: 216
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461503910
- Artikelnr.: 43991662
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Introduction.
References.
2. Leakage Power: Challenges and Solutions.
2.1 Introduction.
2.2 Power Dissipation in CMOS Digital Circuits.
2.3 Impact of Technology Scaling on Leakage Power.
2.4 (Vdd
Vth) Design Space.
2.5 Total Power Management.
2.6 Leakage Power Control Circuit Techniques.
2.7 Chapter Summary.
References.
3. Embedded Mtcmos Combinational Circuits.
3.1 Introduction.
3.2 Basic Concept.
3.3 The Power Minimization Problem.
3.4 Algorithms.
3.5 Choosing the High
Vth Value.
3.6 Chapter Summary.
References.
4. Mtcmos Combinational Circuits Using Sleep Transistors.
4.1 Introduction.
4.2 MTCMOS Design: Overview.
4.3 Variable Breakpoint Switch Level Simulator [1].
4.4 Hierarchical Sizing Based on Mutually Exclusive Discharge Patterns.
4.5 Designing High
Vth Sleep Transistors, the Average Current Method [6].
4.6 Drawbacks of Techniques.
4.7 Distributed Sleep Transistors [9] [10].
4.8 Clustering Techniques.
4.9 Hybrid Heuristic Techniques.
4.10 Virtual Ground Bounce.
4.11 Results: Taking ground bounce into account.
4.12 Power Management of Sleep Transistors.
4.13 Chapter Summary.
References.
5. Mtcmos Sequential Circuits.
5.1 Introduction.
5.2 MTCMOS Latch Circuit.
5.3 MTCMOS Balloon Circuit.
5.4 Intermittent Power Supply Scheme.
5.5 Auto
Backgate
Controlled MTCMOS.
5.6 Virtual Rails Clamp (VRC) Circuit.
5.7 Leakage Sneak Paths in MTCMOS Sequential Circuits.
5.8 Interfacing MTCMOS and CMOS blocks.
5.9 Impact of the High
Vth and Low
Vth values on MTCMOS Sequential Circuit Design.
5.10 Leakage Feedback Gates.
5.11 Chapter Summary.
References.
6. Mtcmos Dynamic Circuits.
6.1 Introduction.
6.2 Clock
Delayed Domino Logic: Overview.
6.3 HS
Domino Logic.
6.4 MTCMOS CD
Domino Logic: Analysis and Overview.
6.5 MTCMOS HS
Domino (MHS
Domino) Logic.
6.6 Domino Dual Cascode Voltage Switch Logic (DDCVSL).
6.7 Chapter Summary.
References.
7. Mtcmos Current
Steering Circuits.
7.1 MOS Current Mode Logic: Overview.
7.2 Introduction.
7.3 Minimum Supply Voltage: First Constraint.
7.4 Saturation Assurance: Second Constraint and the Proposed MTCMOS Design.
7.5 A 2.5 Gbit/s 1:8 Demultiplexer in MTCMOS MCML.
7.6 Impact of Using MTCMOS Technology Over MCML Parameters.
7.7 Chapter Summary.
References.
References.
2. Leakage Power: Challenges and Solutions.
2.1 Introduction.
2.2 Power Dissipation in CMOS Digital Circuits.
2.3 Impact of Technology Scaling on Leakage Power.
2.4 (Vdd
Vth) Design Space.
2.5 Total Power Management.
2.6 Leakage Power Control Circuit Techniques.
2.7 Chapter Summary.
References.
3. Embedded Mtcmos Combinational Circuits.
3.1 Introduction.
3.2 Basic Concept.
3.3 The Power Minimization Problem.
3.4 Algorithms.
3.5 Choosing the High
Vth Value.
3.6 Chapter Summary.
References.
4. Mtcmos Combinational Circuits Using Sleep Transistors.
4.1 Introduction.
4.2 MTCMOS Design: Overview.
4.3 Variable Breakpoint Switch Level Simulator [1].
4.4 Hierarchical Sizing Based on Mutually Exclusive Discharge Patterns.
4.5 Designing High
Vth Sleep Transistors, the Average Current Method [6].
4.6 Drawbacks of Techniques.
4.7 Distributed Sleep Transistors [9] [10].
4.8 Clustering Techniques.
4.9 Hybrid Heuristic Techniques.
4.10 Virtual Ground Bounce.
4.11 Results: Taking ground bounce into account.
4.12 Power Management of Sleep Transistors.
4.13 Chapter Summary.
References.
5. Mtcmos Sequential Circuits.
5.1 Introduction.
5.2 MTCMOS Latch Circuit.
5.3 MTCMOS Balloon Circuit.
5.4 Intermittent Power Supply Scheme.
5.5 Auto
Backgate
Controlled MTCMOS.
5.6 Virtual Rails Clamp (VRC) Circuit.
5.7 Leakage Sneak Paths in MTCMOS Sequential Circuits.
5.8 Interfacing MTCMOS and CMOS blocks.
5.9 Impact of the High
Vth and Low
Vth values on MTCMOS Sequential Circuit Design.
5.10 Leakage Feedback Gates.
5.11 Chapter Summary.
References.
6. Mtcmos Dynamic Circuits.
6.1 Introduction.
6.2 Clock
Delayed Domino Logic: Overview.
6.3 HS
Domino Logic.
6.4 MTCMOS CD
Domino Logic: Analysis and Overview.
6.5 MTCMOS HS
Domino (MHS
Domino) Logic.
6.6 Domino Dual Cascode Voltage Switch Logic (DDCVSL).
6.7 Chapter Summary.
References.
7. Mtcmos Current
Steering Circuits.
7.1 MOS Current Mode Logic: Overview.
7.2 Introduction.
7.3 Minimum Supply Voltage: First Constraint.
7.4 Saturation Assurance: Second Constraint and the Proposed MTCMOS Design.
7.5 A 2.5 Gbit/s 1:8 Demultiplexer in MTCMOS MCML.
7.6 Impact of Using MTCMOS Technology Over MCML Parameters.
7.7 Chapter Summary.
References.
1. Introduction.- References.- 2. Leakage Power: Challenges and Solutions.- 2.1 Introduction.- 2.2 Power Dissipation in CMOS Digital Circuits.- 2.3 Impact of Technology Scaling on Leakage Power.- 2.4 (Vdd-Vth) Design Space.- 2.5 Total Power Management.- 2.6 Leakage Power Control Circuit Techniques.- 2.7 Chapter Summary.- References.- 3. Embedded Mtcmos Combinational Circuits.- 3.1 Introduction.- 3.2 Basic Concept.- 3.3 The Power Minimization Problem.- 3.4 Algorithms.- 3.5 Choosing the High-Vth Value.- 3.6 Chapter Summary.- References.- 4. Mtcmos Combinational Circuits Using Sleep Transistors.- 4.1 Introduction.- 4.2 MTCMOS Design: Overview.- 4.3 Variable Breakpoint Switch Level Simulator [1].- 4.4 Hierarchical Sizing Based on Mutually Exclusive Discharge Patterns.- 4.5 Designing High-Vth Sleep Transistors, the Average Current Method [6].- 4.6 Drawbacks of Techniques.- 4.7 Distributed Sleep Transistors [9] [10].- 4.8 Clustering Techniques.- 4.9 Hybrid Heuristic Techniques.- 4.10 Virtual Ground Bounce.- 4.11 Results: Taking ground bounce into account.- 4.12 Power Management of Sleep Transistors.- 4.13 Chapter Summary.- References.- 5. Mtcmos Sequential Circuits.- 5.1 Introduction.- 5.2 MTCMOS Latch Circuit.- 5.3 MTCMOS Balloon Circuit.- 5.4 Intermittent Power Supply Scheme.- 5.5 Auto-Backgate-Controlled MTCMOS.- 5.6 Virtual Rails Clamp (VRC) Circuit.- 5.7 Leakage Sneak Paths in MTCMOS Sequential Circuits.- 5.8 Interfacing MTCMOS and CMOS blocks.- 5.9 Impact of the High-Vth and Low-Vth values on MTCMOS Sequential Circuit Design.- 5.10 Leakage Feedback Gates.- 5.11 Chapter Summary.- References.- 6. Mtcmos Dynamic Circuits.- 6.1 Introduction.- 6.2 Clock-Delayed Domino Logic: Overview.- 6.3 HS-Domino Logic.- 6.4 MTCMOS CD-Domino Logic: Analysis and Overview.- 6.5 MTCMOS HS-Domino (MHS-Domino) Logic.- 6.6 Domino Dual Cascode Voltage Switch Logic (DDCVSL).- 6.7 Chapter Summary.- References.- 7. Mtcmos Current-Steering Circuits.- 7.1 MOS Current Mode Logic: Overview.- 7.2 Introduction.- 7.3 Minimum Supply Voltage: First Constraint.- 7.4 Saturation Assurance: Second Constraint and the Proposed MTCMOS Design.- 7.5 A 2.5 Gbit/s 1:8 Demultiplexer in MTCMOS MCML.- 7.6 Impact of Using MTCMOS Technology Over MCML Parameters.- 7.7 Chapter Summary.- References.
1. Introduction.
References.
2. Leakage Power: Challenges and Solutions.
2.1 Introduction.
2.2 Power Dissipation in CMOS Digital Circuits.
2.3 Impact of Technology Scaling on Leakage Power.
2.4 (Vdd
Vth) Design Space.
2.5 Total Power Management.
2.6 Leakage Power Control Circuit Techniques.
2.7 Chapter Summary.
References.
3. Embedded Mtcmos Combinational Circuits.
3.1 Introduction.
3.2 Basic Concept.
3.3 The Power Minimization Problem.
3.4 Algorithms.
3.5 Choosing the High
Vth Value.
3.6 Chapter Summary.
References.
4. Mtcmos Combinational Circuits Using Sleep Transistors.
4.1 Introduction.
4.2 MTCMOS Design: Overview.
4.3 Variable Breakpoint Switch Level Simulator [1].
4.4 Hierarchical Sizing Based on Mutually Exclusive Discharge Patterns.
4.5 Designing High
Vth Sleep Transistors, the Average Current Method [6].
4.6 Drawbacks of Techniques.
4.7 Distributed Sleep Transistors [9] [10].
4.8 Clustering Techniques.
4.9 Hybrid Heuristic Techniques.
4.10 Virtual Ground Bounce.
4.11 Results: Taking ground bounce into account.
4.12 Power Management of Sleep Transistors.
4.13 Chapter Summary.
References.
5. Mtcmos Sequential Circuits.
5.1 Introduction.
5.2 MTCMOS Latch Circuit.
5.3 MTCMOS Balloon Circuit.
5.4 Intermittent Power Supply Scheme.
5.5 Auto
Backgate
Controlled MTCMOS.
5.6 Virtual Rails Clamp (VRC) Circuit.
5.7 Leakage Sneak Paths in MTCMOS Sequential Circuits.
5.8 Interfacing MTCMOS and CMOS blocks.
5.9 Impact of the High
Vth and Low
Vth values on MTCMOS Sequential Circuit Design.
5.10 Leakage Feedback Gates.
5.11 Chapter Summary.
References.
6. Mtcmos Dynamic Circuits.
6.1 Introduction.
6.2 Clock
Delayed Domino Logic: Overview.
6.3 HS
Domino Logic.
6.4 MTCMOS CD
Domino Logic: Analysis and Overview.
6.5 MTCMOS HS
Domino (MHS
Domino) Logic.
6.6 Domino Dual Cascode Voltage Switch Logic (DDCVSL).
6.7 Chapter Summary.
References.
7. Mtcmos Current
Steering Circuits.
7.1 MOS Current Mode Logic: Overview.
7.2 Introduction.
7.3 Minimum Supply Voltage: First Constraint.
7.4 Saturation Assurance: Second Constraint and the Proposed MTCMOS Design.
7.5 A 2.5 Gbit/s 1:8 Demultiplexer in MTCMOS MCML.
7.6 Impact of Using MTCMOS Technology Over MCML Parameters.
7.7 Chapter Summary.
References.
References.
2. Leakage Power: Challenges and Solutions.
2.1 Introduction.
2.2 Power Dissipation in CMOS Digital Circuits.
2.3 Impact of Technology Scaling on Leakage Power.
2.4 (Vdd
Vth) Design Space.
2.5 Total Power Management.
2.6 Leakage Power Control Circuit Techniques.
2.7 Chapter Summary.
References.
3. Embedded Mtcmos Combinational Circuits.
3.1 Introduction.
3.2 Basic Concept.
3.3 The Power Minimization Problem.
3.4 Algorithms.
3.5 Choosing the High
Vth Value.
3.6 Chapter Summary.
References.
4. Mtcmos Combinational Circuits Using Sleep Transistors.
4.1 Introduction.
4.2 MTCMOS Design: Overview.
4.3 Variable Breakpoint Switch Level Simulator [1].
4.4 Hierarchical Sizing Based on Mutually Exclusive Discharge Patterns.
4.5 Designing High
Vth Sleep Transistors, the Average Current Method [6].
4.6 Drawbacks of Techniques.
4.7 Distributed Sleep Transistors [9] [10].
4.8 Clustering Techniques.
4.9 Hybrid Heuristic Techniques.
4.10 Virtual Ground Bounce.
4.11 Results: Taking ground bounce into account.
4.12 Power Management of Sleep Transistors.
4.13 Chapter Summary.
References.
5. Mtcmos Sequential Circuits.
5.1 Introduction.
5.2 MTCMOS Latch Circuit.
5.3 MTCMOS Balloon Circuit.
5.4 Intermittent Power Supply Scheme.
5.5 Auto
Backgate
Controlled MTCMOS.
5.6 Virtual Rails Clamp (VRC) Circuit.
5.7 Leakage Sneak Paths in MTCMOS Sequential Circuits.
5.8 Interfacing MTCMOS and CMOS blocks.
5.9 Impact of the High
Vth and Low
Vth values on MTCMOS Sequential Circuit Design.
5.10 Leakage Feedback Gates.
5.11 Chapter Summary.
References.
6. Mtcmos Dynamic Circuits.
6.1 Introduction.
6.2 Clock
Delayed Domino Logic: Overview.
6.3 HS
Domino Logic.
6.4 MTCMOS CD
Domino Logic: Analysis and Overview.
6.5 MTCMOS HS
Domino (MHS
Domino) Logic.
6.6 Domino Dual Cascode Voltage Switch Logic (DDCVSL).
6.7 Chapter Summary.
References.
7. Mtcmos Current
Steering Circuits.
7.1 MOS Current Mode Logic: Overview.
7.2 Introduction.
7.3 Minimum Supply Voltage: First Constraint.
7.4 Saturation Assurance: Second Constraint and the Proposed MTCMOS Design.
7.5 A 2.5 Gbit/s 1:8 Demultiplexer in MTCMOS MCML.
7.6 Impact of Using MTCMOS Technology Over MCML Parameters.
7.7 Chapter Summary.
References.
1. Introduction.- References.- 2. Leakage Power: Challenges and Solutions.- 2.1 Introduction.- 2.2 Power Dissipation in CMOS Digital Circuits.- 2.3 Impact of Technology Scaling on Leakage Power.- 2.4 (Vdd-Vth) Design Space.- 2.5 Total Power Management.- 2.6 Leakage Power Control Circuit Techniques.- 2.7 Chapter Summary.- References.- 3. Embedded Mtcmos Combinational Circuits.- 3.1 Introduction.- 3.2 Basic Concept.- 3.3 The Power Minimization Problem.- 3.4 Algorithms.- 3.5 Choosing the High-Vth Value.- 3.6 Chapter Summary.- References.- 4. Mtcmos Combinational Circuits Using Sleep Transistors.- 4.1 Introduction.- 4.2 MTCMOS Design: Overview.- 4.3 Variable Breakpoint Switch Level Simulator [1].- 4.4 Hierarchical Sizing Based on Mutually Exclusive Discharge Patterns.- 4.5 Designing High-Vth Sleep Transistors, the Average Current Method [6].- 4.6 Drawbacks of Techniques.- 4.7 Distributed Sleep Transistors [9] [10].- 4.8 Clustering Techniques.- 4.9 Hybrid Heuristic Techniques.- 4.10 Virtual Ground Bounce.- 4.11 Results: Taking ground bounce into account.- 4.12 Power Management of Sleep Transistors.- 4.13 Chapter Summary.- References.- 5. Mtcmos Sequential Circuits.- 5.1 Introduction.- 5.2 MTCMOS Latch Circuit.- 5.3 MTCMOS Balloon Circuit.- 5.4 Intermittent Power Supply Scheme.- 5.5 Auto-Backgate-Controlled MTCMOS.- 5.6 Virtual Rails Clamp (VRC) Circuit.- 5.7 Leakage Sneak Paths in MTCMOS Sequential Circuits.- 5.8 Interfacing MTCMOS and CMOS blocks.- 5.9 Impact of the High-Vth and Low-Vth values on MTCMOS Sequential Circuit Design.- 5.10 Leakage Feedback Gates.- 5.11 Chapter Summary.- References.- 6. Mtcmos Dynamic Circuits.- 6.1 Introduction.- 6.2 Clock-Delayed Domino Logic: Overview.- 6.3 HS-Domino Logic.- 6.4 MTCMOS CD-Domino Logic: Analysis and Overview.- 6.5 MTCMOS HS-Domino (MHS-Domino) Logic.- 6.6 Domino Dual Cascode Voltage Switch Logic (DDCVSL).- 6.7 Chapter Summary.- References.- 7. Mtcmos Current-Steering Circuits.- 7.1 MOS Current Mode Logic: Overview.- 7.2 Introduction.- 7.3 Minimum Supply Voltage: First Constraint.- 7.4 Saturation Assurance: Second Constraint and the Proposed MTCMOS Design.- 7.5 A 2.5 Gbit/s 1:8 Demultiplexer in MTCMOS MCML.- 7.6 Impact of Using MTCMOS Technology Over MCML Parameters.- 7.7 Chapter Summary.- References.
From the reviews:
"This book is written for students of VLSI design and practicing circuit designers and shows how the MTCMOS technology can be used to reduce power dissipation. ... The text covers a wide range of circuit design techniques. ... Each chapter contains a brief introduction that serves as a quick background, summary that explains the contributions contained therein, and a set of additional references provided for further reading." (A. V. Chashkin, Zentralblatt MATH, Vol. 1041 (16), 2004)
"This book is written for students of VLSI design and practicing circuit designers and shows how the MTCMOS technology can be used to reduce power dissipation. ... The text covers a wide range of circuit design techniques. ... Each chapter contains a brief introduction that serves as a quick background, summary that explains the contributions contained therein, and a set of additional references provided for further reading." (A. V. Chashkin, Zentralblatt MATH, Vol. 1041 (16), 2004)