Multiconfigurational Quantum Chemistry (eBook, PDF)
Alle Infos zum eBook verschenken
Multiconfigurational Quantum Chemistry (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.61MB
- Quantum Chemistry and Dynamics of Excited States (eBook, PDF)250,99 €
- Advances in Chemical Physics, Volume 98 (eBook, PDF)422,99 €
- Adventures in Chemical Physics (eBook, PDF)260,99 €
- Advances in Chemical Physics, Volume 121 (eBook, PDF)311,99 €
- Advances in Chemical Physics, Volume 114 (eBook, PDF)340,99 €
- Neutrons in Soft Matter (eBook, PDF)160,99 €
- Advances in Chemical Physics, Volume 77 (eBook, PDF)510,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 240
- Erscheinungstermin: 3. August 2016
- Englisch
- ISBN-13: 9781119277873
- Artikelnr.: 47609514
- Verlag: John Wiley & Sons
- Seitenzahl: 240
- Erscheinungstermin: 3. August 2016
- Englisch
- ISBN-13: 9781119277873
- Artikelnr.: 47609514
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
)2
(
)2 97 8.4 Multiple Bonds, Aromatic Rings 99 8.5 Other Correlation Issues 100 8.6 Further Reading 102 8.7 References 102 9 Multiconfigurational SCF Theory 103 9.1 Multiconfigurational SCF Theory 103 9.1.1 The H2 Molecule 104 9.1.2 Multiple Bonds 107 9.1.3 Molecules with Competing Valence Structures 108 9.1.4 Transition States on Energy Surfaces 109 9.1.5 Other Cases of Near-Degeneracy Effects 110 9.1.6 Static and Dynamic Correlation 111 9.2 Determination of the MCSCF Wave Function 114 9.2.1 Exponential Operators and Orbital Transformations 115 9.2.2 Slater Determinants and Spin-Adapted State Functions 117 9.2.3 The MCSCF Gradient and Hessian 119 9.3 Complete and Restricted Active Spaces, the CASSCF and RASSCF Methods 121 9.3.1 State Average MCSCF 125 9.3.2 Novel MCSCF Methods 125 9.4 Choosing the Active Space 126 9.4.1 Atoms and Atomic Ions 126 9.4.2 Molecules Built from Main Group Atoms 128 9.5 References 130 10 The RAS State-Interaction Method 131 10.1 The Biorthogonal Transformation 131 10.2 Common One-Electron Properties 133 10.3 Wigner-Eckart Coefficients for Spin-Orbit Interaction 134 10.4 Unconventional Usage of RASSI 135 10.5 Further Reading 136 10.6 References 136 11 The Multireference CI Method 137 11.1 Single-Reference CI. Nonextensivity 137 11.2 Multireference CI 139 11.3 Further Reading 140 11.4 References 140 12 Multiconfigurational Reference Perturbation Theory 143 12.1 CASPT2 theory 143 12.1.1 Introduction 143 12.1.2 Quasi-Degenerate Rayleigh-Schrödinger Perturbation Theory 144 12.1.3 The First-Order Interacting Space 145 12.1.4 Multiconfigurational Root States 146 12.1.5 The CASPT2 Equations 148 12.1.6 IPEA, RASPT2, and MS-CASPT2 154 12.2 References 155 13 CASPT2/CASSCF Applications 157 13.1 Orbital Representations 158 13.1.1 Starting Orbitals: Atomic Orbitals 162 13.1.2 Starting Orbitals: Molecular Orbitals 164 13.2 Specific Applications 167 13.2.1 Ground State Reactions 167 13.2.2 Excited States-Vertical Excitation Energies 171 13.2.3 Photochemistry and Photophysics 184 13.2.4 Transition Metal Chemistry 194 13.2.5 Spin-Orbit Chemistry 202 13.2.6 Lanthanide Chemistry 207 13.2.7 Actinide Chemistry 209 13.2.8 RASSCF/RASPT2 Applications 212 13.3 References 216 Summary and Conclusion 219 Index 221
)2
(
)2 97 8.4 Multiple Bonds, Aromatic Rings 99 8.5 Other Correlation Issues 100 8.6 Further Reading 102 8.7 References 102 9 Multiconfigurational SCF Theory 103 9.1 Multiconfigurational SCF Theory 103 9.1.1 The H2 Molecule 104 9.1.2 Multiple Bonds 107 9.1.3 Molecules with Competing Valence Structures 108 9.1.4 Transition States on Energy Surfaces 109 9.1.5 Other Cases of Near-Degeneracy Effects 110 9.1.6 Static and Dynamic Correlation 111 9.2 Determination of the MCSCF Wave Function 114 9.2.1 Exponential Operators and Orbital Transformations 115 9.2.2 Slater Determinants and Spin-Adapted State Functions 117 9.2.3 The MCSCF Gradient and Hessian 119 9.3 Complete and Restricted Active Spaces, the CASSCF and RASSCF Methods 121 9.3.1 State Average MCSCF 125 9.3.2 Novel MCSCF Methods 125 9.4 Choosing the Active Space 126 9.4.1 Atoms and Atomic Ions 126 9.4.2 Molecules Built from Main Group Atoms 128 9.5 References 130 10 The RAS State-Interaction Method 131 10.1 The Biorthogonal Transformation 131 10.2 Common One-Electron Properties 133 10.3 Wigner-Eckart Coefficients for Spin-Orbit Interaction 134 10.4 Unconventional Usage of RASSI 135 10.5 Further Reading 136 10.6 References 136 11 The Multireference CI Method 137 11.1 Single-Reference CI. Nonextensivity 137 11.2 Multireference CI 139 11.3 Further Reading 140 11.4 References 140 12 Multiconfigurational Reference Perturbation Theory 143 12.1 CASPT2 theory 143 12.1.1 Introduction 143 12.1.2 Quasi-Degenerate Rayleigh-Schrödinger Perturbation Theory 144 12.1.3 The First-Order Interacting Space 145 12.1.4 Multiconfigurational Root States 146 12.1.5 The CASPT2 Equations 148 12.1.6 IPEA, RASPT2, and MS-CASPT2 154 12.2 References 155 13 CASPT2/CASSCF Applications 157 13.1 Orbital Representations 158 13.1.1 Starting Orbitals: Atomic Orbitals 162 13.1.2 Starting Orbitals: Molecular Orbitals 164 13.2 Specific Applications 167 13.2.1 Ground State Reactions 167 13.2.2 Excited States-Vertical Excitation Energies 171 13.2.3 Photochemistry and Photophysics 184 13.2.4 Transition Metal Chemistry 194 13.2.5 Spin-Orbit Chemistry 202 13.2.6 Lanthanide Chemistry 207 13.2.7 Actinide Chemistry 209 13.2.8 RASSCF/RASPT2 Applications 212 13.3 References 216 Summary and Conclusion 219 Index 221