Shunli Wang, Kailong Liu, Yujie Wang, Daniel-Ioan Stroe, Carlos Fernandez, Josep M Guerrero
Multidimensional Lithium-Ion Battery Status Monitoring (eBook, ePUB)
50,95 €
50,95 €
inkl. MwSt.
Sofort per Download lieferbar
25 °P sammeln
50,95 €
Als Download kaufen
50,95 €
inkl. MwSt.
Sofort per Download lieferbar
25 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
50,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
25 °P sammeln
Shunli Wang, Kailong Liu, Yujie Wang, Daniel-Ioan Stroe, Carlos Fernandez, Josep M Guerrero
Multidimensional Lithium-Ion Battery Status Monitoring (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book focuses on equivalent circuit modeling, parameter identification, and state estimation in Li-ion battery power applications.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 21.55MB
Andere Kunden interessierten sich auch für
- Shunli WangMultidimensional Lithium-Ion Battery Status Monitoring (eBook, PDF)50,95 €
- Joey JungHydrometallurgical Recycling of Lithium-Ion Battery Materials (eBook, ePUB)146,95 €
- Lithium-Ion Batteries (eBook, ePUB)182,95 €
- Microscopy and Microanalysis for Lithium-Ion Batteries (eBook, ePUB)54,95 €
- Alexander SkundinAll Solid State Thin-Film Lithium-Ion Batteries (eBook, ePUB)57,95 €
- Rechargeable Lithium-Ion Batteries (eBook, ePUB)74,95 €
- Ming-Fa LinLithium-Ion Batteries and Solar Cells (eBook, ePUB)48,95 €
-
-
-
This book focuses on equivalent circuit modeling, parameter identification, and state estimation in Li-ion battery power applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 354
- Erscheinungstermin: 28. Dezember 2022
- Englisch
- ISBN-13: 9781000799606
- Artikelnr.: 66346141
- Verlag: Taylor & Francis
- Seitenzahl: 354
- Erscheinungstermin: 28. Dezember 2022
- Englisch
- ISBN-13: 9781000799606
- Artikelnr.: 66346141
Shunli Wang is Professor with the School of Electrical Engineering, Southwest University of Science and Technology, China. He is an authoritative expert in the field of new energy research, the head of DTlab and the new energy measurement & control research team, modeling and state estimation strategy research for lithium-ion batteries. He received the B.Sc. degree and Ph.D. degree in electrical engineering from the Southwest University of Science and Technology. He has undertaken more than 40 projects and 30 patents, published more than 100 research papers as well as won 20 awards such as Young Scholar, Science & Technology Progress Awards, and University & Enterprise Innovative Talent Team et al, developed multiple generation battery systems to improve the reliability and expand the application field with significant social and economic benefits.
Kailong Liu received the Ph.D. degree in electrical engineering from Queen's University, Belfast, U.K., in 2018. He is a Senior Research Fellow with the Warwick Manufacturing Group, The University of Warwick, Coventry, U.K. His research interests include modeling, optimization, and control with applications to electrical/hybrid vehicles, energy storage, and battery manufacture and management.
Yujie Wang is a postdoctoral research fellow in the Department of Automation at the University of Science and Technology of China.
Daniel-Ioan Stroe received the Dipl.-Ing. degree in automatics from the Transilvania University of Brasov, Romania, in 2008, and the M.Sc. degree in wind power systems and the Ph.D. degree in lifetime modelling of lithium-ion batteries from Aalborg University (AAU), Aalborg, Denmark, in 2010 and 2014, respectively. He has been with AAU since 2010. He is currently an Associate Professor with AAU Energy, where he leads the Batteries Research Group, and the Battery Systems Testing Laboratory. He was a Visiting Researcher with RWTH Aachen, Germany, in 2013. He has coauthored over 150 journals and conference papers in various battery-related topics. His current research interests include the area of energy storage systems for grid and e-mobility, lithium-based batteries testing, modelling, and diagnostics and their lifetime estimation.
Carlos Fernandez is a Lecturer in Bioanalytical Chemistry at Robert Gordon University, U.K. He received his PhD in Electrocatalytic Reactions from The University of Hull. He than worked as Consultant Technologist in Hull and in a postdoctoral position in Manchester developing an electrochemical sensor using screen printed electrodes to detect methamphetamine, ampthetamine and ecstasy in oral fluid for the purpose of roadside testing.
Josep M. Guerrero has been a Full Professor with the Department of Energy Technology, Aalborg University, Denmark since 2011, where he is responsible for the Microgrid Research Program. He is a guest Professor at the Chinese Academy of Science and the Nanjing University of Aeronautics and Astronautics; Chair Professor at Shandong University; Distinguished Guest Professor at Hunan University; and Visiting Professor Fellow at Aston University, UK.
Kailong Liu received the Ph.D. degree in electrical engineering from Queen's University, Belfast, U.K., in 2018. He is a Senior Research Fellow with the Warwick Manufacturing Group, The University of Warwick, Coventry, U.K. His research interests include modeling, optimization, and control with applications to electrical/hybrid vehicles, energy storage, and battery manufacture and management.
Yujie Wang is a postdoctoral research fellow in the Department of Automation at the University of Science and Technology of China.
Daniel-Ioan Stroe received the Dipl.-Ing. degree in automatics from the Transilvania University of Brasov, Romania, in 2008, and the M.Sc. degree in wind power systems and the Ph.D. degree in lifetime modelling of lithium-ion batteries from Aalborg University (AAU), Aalborg, Denmark, in 2010 and 2014, respectively. He has been with AAU since 2010. He is currently an Associate Professor with AAU Energy, where he leads the Batteries Research Group, and the Battery Systems Testing Laboratory. He was a Visiting Researcher with RWTH Aachen, Germany, in 2013. He has coauthored over 150 journals and conference papers in various battery-related topics. His current research interests include the area of energy storage systems for grid and e-mobility, lithium-based batteries testing, modelling, and diagnostics and their lifetime estimation.
Carlos Fernandez is a Lecturer in Bioanalytical Chemistry at Robert Gordon University, U.K. He received his PhD in Electrocatalytic Reactions from The University of Hull. He than worked as Consultant Technologist in Hull and in a postdoctoral position in Manchester developing an electrochemical sensor using screen printed electrodes to detect methamphetamine, ampthetamine and ecstasy in oral fluid for the purpose of roadside testing.
Josep M. Guerrero has been a Full Professor with the Department of Energy Technology, Aalborg University, Denmark since 2011, where he is responsible for the Microgrid Research Program. He is a guest Professor at the Chinese Academy of Science and the Nanjing University of Aeronautics and Astronautics; Chair Professor at Shandong University; Distinguished Guest Professor at Hunan University; and Visiting Professor Fellow at Aston University, UK.
1. Battery Characteristics and Parameters. 2. Equivalent Modeling and
Parameter Identification. 3. Battery State of Charge Estimation. 4. Battery
State of Health Estimation. 5. Battery State of Power Estimation. 6.
Battery State of Energy and Cycle Life Estimation.
Parameter Identification. 3. Battery State of Charge Estimation. 4. Battery
State of Health Estimation. 5. Battery State of Power Estimation. 6.
Battery State of Energy and Cycle Life Estimation.
1. Battery Characteristics and Parameters. 2. Equivalent Modeling and
Parameter Identification. 3. Battery State of Charge Estimation. 4. Battery
State of Health Estimation. 5. Battery State of Power Estimation. 6.
Battery State of Energy and Cycle Life Estimation.
Parameter Identification. 3. Battery State of Charge Estimation. 4. Battery
State of Health Estimation. 5. Battery State of Power Estimation. 6.
Battery State of Energy and Cycle Life Estimation.